www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesBaker-Campbell-Hausdorff-F.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Sonstiges" - Baker-Campbell-Hausdorff-F.
Baker-Campbell-Hausdorff-F. < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Baker-Campbell-Hausdorff-F.: Tipp
Status: (Frage) überfällig Status 
Datum: 23:01 So 12.05.2013
Autor: Lustique

Aufgabe
Zeigen Sie, daß für kleines $| x | [mm] \ll [/mm] 1$ die folgende Relation für die Funktionen der beiden $n [mm] \times [/mm] n$ Matrizen $M$ und $N$ gilt:

[mm] $\exp(xM) \exp(xN) [/mm] = [mm] \exp\left(x(M + N) + \frac{x^2}{2}[M, N]\right) +\mathcal{O}(x^3)$ [/mm] ,
wobei $[M, N] = MN - NM$ den Kommutator bezeichnet.




Die allgemeine Baker-Campbell-Hausdorff Formel lautet:
[mm] $e^ABe^{-A} [/mm] = [mm] \sum_{n=0}^{\infty} \frac{1}{n!} B_n$ [/mm] ,
wobei [mm] $B_n [/mm] = [A, [mm] B_{n-1} [/mm] ]$ und [mm] $B_0 [/mm] = B$. Zeigen Sie, dass aus dieser die obige Gleichung folgt.



Hallo schon wieder,

ich komme leider bei der obigen Aufgabe überhaupt nicht weiter und bräuchte deswegen einen Tipp, wie das Ganze überhaupt anzufangen ist. Ich habe es schon mit einer Taylorentwicklung der linken Seite versucht, aber das hat irgendwie zu nichts geführt und hätte wohl auch den Hinweis nicht genutzt. Das was ich zu ähnlichen Problemen im Internet gefunden habe war auch immer nur für kommutierende Matrizen, es wurde die Logarithmusfunktion genutzt (nicht bekannt für Matrizen) oder es wurden zu viele Vorkenntnisse vorausgesetzt (Lie-Algebra, etc.), und hat mir deshalb auch nicht weitergeholfen.

Könnt ihr mir hier mit einem Ansatz aushelfen? Ich weiß nämlich auch gar nicht, wie ich den Hinweis nutzen soll, und die zu beweisende Gleichung groß umstellen habe ich auch nicht hinbekommen, da ich in diesem Fall nicht weiß, wie vernünftig mit dem Landau-O umzugehen ist.


Vorkenntnisse in diesem Bereich Lie-Algebra oder Ähnliches sind übrigens keine vorhanden...

        
Bezug
Baker-Campbell-Hausdorff-F.: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 19:52 Mo 13.05.2013
Autor: Lustique

Hat denn keiner eine Idee?

Wie ist denn überhaupt [mm] $\exp(xM) \exp(xN) [/mm] = [mm] \exp\left(x(M + N) + \frac{x^2}{2}[M, N]\right) +\mathcal{O}(x^3)$ [/mm] zu verstehen? Das ist doch eigentlich eine Abschätzung, oder?

Bezug
                
Bezug
Baker-Campbell-Hausdorff-F.: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Mi 15.05.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Baker-Campbell-Hausdorff-F.: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:20 Di 14.05.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]