www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeBasen von V
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Moduln und Vektorräume" - Basen von V
Basen von V < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basen von V: Idee und Rückfrage
Status: (Frage) beantwortet Status 
Datum: 11:54 So 09.01.2011
Autor: Ersti10

Aufgabe
Es seien in [mm] \IR^{5} [/mm] die Vektoren:
[mm] v_{1}:= [/mm] (4,1,1,0,-2) ; [mm] v_{2}:= [/mm] (0,1,4,-1,2) ; [mm] v_{3}:= [/mm] (4,3,9,-2,2);
[mm] v_{4}:= [/mm] (1,1,1,1,1) ; [mm] v_{5}:= [/mm] (0,-2,-8,2,-4)
gegeben. Weiter sei V:= [mm] span(v_{1},v_{2},v_{3},v_{4},v_{5}). [/mm]

Finden Sie alle Basen von V die aus den Elementen { [mm] v_{1}, [/mm] . . . , [mm] v_{5} [/mm] } bestehen, und kombinieren Sie jeweils [mm] v_{1}, [/mm] . . . , [mm] v_{5} [/mm] daraus linear.

Also:
Mein erster Schritt war es zu gucken, ob es Vektoren gibt, die linear abhängig sind. Das ist bei [mm] v_{2} [/mm] und [mm] v_{5} [/mm] der Fall.
Bei [mm] v_{1},v_{2},v_{3} [/mm] muss ich noch prüfen ob die linear unabhängig sind.

Nun kommt aber meine Fragen.

1.)Ich soll ja alle Basen von V finden, also wird das klar mehr als eine sein. Reicht es da aus, wenn ich 2 Vektoren nehme die lin. unabhängig sind, oder brauche ich doch 5 Vektoren, da wir uns im [mm] \IR^{5} [/mm] befinden?

2.) Ich verstehe den letzten Teil der Aufgabe nicht. Wenn ich die Basen gefunden habe, wieso soll ich dann die Vektoren daraus linear kombinieren? Wie ist das machbar?

Hoffe jmd. kann mir helfen. =)

        
Bezug
Basen von V: Antwort
Status: (Antwort) fertig Status 
Datum: 13:19 So 09.01.2011
Autor: schachuzipus

Hallo Ersti10,


> Es seien in [mm]\IR^{5}[/mm] die Vektoren:
>  [mm]v_{1}:=[/mm] (4,1,1,0,-2) ; [mm]v_{2}:=[/mm] (0,1,4,-1,2) ; [mm]v_{3}:=[/mm]
> (4,3,9,-2,2);
>  [mm]v_{4}:=[/mm] (1,1,1,1,1) ; [mm]v_{5}:=[/mm] (0,-2,-8,2,-4)
>  gegeben. Weiter sei V:=
> [mm]span(v_{1},v_{2},v_{3},v_{4},v_{5}).[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


>  
> Finden Sie alle Basen von V die aus den Elementen { [mm]v_{1},[/mm]
> . . . , [mm]v_{5}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

} bestehen, und kombinieren Sie jeweils

> [mm]v_{1},[/mm] . . . , [mm]v_{5}[/mm] daraus linear.
>  Also:
>  Mein erster Schritt war es zu gucken, ob es Vektoren gibt,
> die linear abhängig sind. Das ist bei [mm]v_{2}[/mm] und [mm]v_{5}[/mm] der
> Fall.

Ok, dann kannst du (meinetwegen) [mm]v_5[/mm] schonmal rausschmeißen.

Dann stopfe mal [mm]v_1,..., v_4[/mm] als Spalten in eine Matrix und bringe sie in Zeilenstufenform, um ihren Rang zu bestimmen.

Der gibt die die Dimension des von den Vektoren [mm]v_1,..., v_4[/mm] aufgespannten Raumes an.

Greife dir dann jeweils entsprechend dieser Dimension viele Vektoren aus dem Spann raus und prüfe auf lineare Unabh., je Dim.-viele lin. unabh. Vektoren bilden dann eine Basis

>  Bei [mm]v_{1},v_{2},v_{3}[/mm] muss ich noch prüfen ob die linear
> unabhängig sind.
>  
> Nun kommt aber meine Fragen.
>  
> 1.)Ich soll ja alle Basen von V finden, also wird das klar
> mehr als eine sein. Reicht es da aus, wenn ich 2 Vektoren
> nehme die lin. unabhängig sind, oder brauche ich doch 5
> Vektoren, da wir uns im [mm]\IR^{5}[/mm] befinden?
>  
> 2.) Ich verstehe den letzten Teil der Aufgabe nicht. Wenn
> ich die Basen gefunden habe, wieso soll ich dann die
> Vektoren daraus linear kombinieren? Wie ist das machbar?

Nun, sagen wir hypothetisch (ich habe nichts gerechnet!), du rechnest aus, Dim=3 und [mm]\{v_1,v_2,v_4\}[/mm] bildet eine Basis.

Dann kannst du etwa [mm]v_5[/mm] darstellen als [mm]v_5=\lambda\cdot{}v_1+\mu\cdot{}v_2+\nu\cdot{}v_4[/mm]

Da du oben schon nachgerechnet hast, dass [mm]v_2,v_5[/mm] lin. abh. sind, kannst du schreiben

[mm]v_5=0\cdot{}v_1-2\cdot{}v_2+0\cdot{}v_4[/mm]

In den anderen Fällen musst du etwas mehr Rechenaufwand betreiben, um die Koeffizienten [mm]\lambda,\mu,\nu[/mm] zu bestimmen.

>  
> Hoffe jmd. kann mir helfen. =)

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]