Basis bestimmen < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 00:49 Mo 02.06.2014 | Autor: | Avinu |
Aufgabe | Es sei A [mm] \in \IF_2^{4 \times 4} [/mm] gegeben durch A = [mm] \pmat{ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 }.
[/mm]
Bestimmen Sie Basen s und t von [mm] \IF_2^{4 \times 1} [/mm] derart, dass [mm] M_{t,s}(\phi_A) [/mm] eine Quasieinheitsmatrix ist. |
Hallo zusammen,
wir haben definiert:
Darstellungsmatrix: [mm] M_{t,s}(\phi) [/mm] = ( [mm] \kappa_t(\phi(s_1)) [/mm] ... [mm] \kappa_t(\phi(s_n))). [/mm] Mit t und s Basen, [mm] \phi [/mm] ein Vektorraumhomomorphismus und [mm] \kappa_t(v) [/mm] der Koordinatenvektor von v zur Basis t.
Spalteninterpretation einer Matrix: [mm] \phi_A [/mm] : [mm] K^{n \times 1} \to K^{m \times 1}, [/mm] x [mm] \mapsto [/mm] Ax für eine Matrix A [mm] \in K^{m \times n}.
[/mm]
Quasieinheitsmatrix: Für m,n,r [mm] \in \IN_0 [/mm] mit r [mm] \leq [/mm] min(m,n) ist [mm] Q_r \in K^{m \times n} [/mm] gegeben durch [mm] Q_r [/mm] = [mm] \pmat{ E_r & 0 \\ 0 & 0 }
[/mm]
Nun zu der Frage:
Wenn [mm] M_{t,s}(\phi_A) [/mm] eine Quasieinheitsmatrix sein soll, dann muss für die Basen s und t ja gelten, dass [mm] \kappa_t(\phi_A(s_i)) [/mm] = [mm] e_i [/mm] ist. Folglich muss ja [mm] \phi_A(s_i) [/mm] = [mm] t_i [/mm] gelten, richtig? Wenn ich s jetzt als die Standardbasis wähle, dann bekomme ich in t aber zwei linear abhängige Vektoren, sodass t keine Basis mehr ist. Leider fällt mir aber nichts ein, wie ich sicherstellen könnte, dass ich die Basis s so wähle, dass auch [mm] \phi_A(s) [/mm] = t noch eine Basis ist. Ich weiß, dass [mm] \phi_A [/mm] ein Vektorraumhomomorphismus ist. Aber hilft mir das alleine schon weiter?
Viele Grüße,
Avinu
|
|
|
|
> Es sei A [mm]\in \IF_2^{4 \times 4}[/mm] gegeben durch A = [mm]\pmat{ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 }.[/mm]
>
> Bestimmen Sie Basen s und t von [mm]\IF_2^{4 \times 1}[/mm] derart,
> dass [mm]M_{t,s}(\phi_A)[/mm] eine Quasieinheitsmatrix ist.
Hallo,
bestimme eine Basis [mm] t_1,...,t_r [/mm] des Bildes und passend dazu Vektoren [mm] s_1,...,s_r, [/mm] die darauf abgebildet werden.
Damit hast Du dann schonmal [mm] E_r.
[/mm]
[mm] s_1,..., s_r [/mm] ergänze durch eine Basis des Kerns zu einer Basis des [mm] \IF_2^{4 \times 1}, [/mm] und die Vektoren von t ergänze durch irgendwelche Vektoren zu einer Basis von [mm] \IF_2^{4 \times 1}.
[/mm]
LG Angela
> Hallo zusammen,
>
> wir haben definiert:
>
> Darstellungsmatrix: [mm]M_{t,s}(\phi)[/mm] = ( [mm]\kappa_t(\phi(s_1))[/mm]
> ... [mm]\kappa_t(\phi(s_n))).[/mm] Mit t und s Basen, [mm]\phi[/mm] ein
> Vektorraumhomomorphismus und [mm]\kappa_t(v)[/mm] der
> Koordinatenvektor von v zur Basis t.
>
> Spalteninterpretation einer Matrix: [mm]\phi_A[/mm] : [mm]K^{n \times 1} \to K^{m \times 1},[/mm]
> x [mm]\mapsto[/mm] Ax für eine Matrix A [mm]\in K^{m \times n}.[/mm]
>
> Quasieinheitsmatrix: Für m,n,r [mm]\in \IN_0[/mm] mit r [mm]\leq[/mm]
> min(m,n) ist [mm]Q_r \in K^{m \times n}[/mm] gegeben durch [mm]Q_r[/mm] =
> [mm]\pmat{ E_r & 0 \\ 0 & 0 }[/mm]
>
> Nun zu der Frage:
> Wenn [mm]M_{t,s}(\phi_A)[/mm] eine Quasieinheitsmatrix sein soll,
> dann muss für die Basen s und t ja gelten, dass
> [mm]\kappa_t(\phi_A(s_i))[/mm] = [mm]e_i[/mm] ist. Folglich muss ja
> [mm]\phi_A(s_i)[/mm] = [mm]t_i[/mm] gelten, richtig? Wenn ich s jetzt als die
> Standardbasis wähle, dann bekomme ich in t aber zwei
> linear abhängige Vektoren, sodass t keine Basis mehr ist.
> Leider fällt mir aber nichts ein, wie ich sicherstellen
> könnte, dass ich die Basis s so wähle, dass auch
> [mm]\phi_A(s)[/mm] = t noch eine Basis ist. Ich weiß, dass [mm]\phi_A[/mm]
> ein Vektorraumhomomorphismus ist. Aber hilft mir das
> alleine schon weiter?
>
> Viele Grüße,
> Avinu
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 11:49 Mo 02.06.2014 | Autor: | Avinu |
Hallo Angela, hallo auch an die übrigen Leser,
schon mal vielen lieben Dank für deine Antwort. Allerdings muss ich wohl irgendwo einen Fehler machen, den ich aber leider nicht finde.
Es ist ja Im [mm] \phi_A [/mm] = Ax = [mm] \pmat{ x_1 + x_3 + x_4 \\ x_2 + x_4 \\ x_1 + x_2 + x_3 + x_4 \\ x_1 + x_2 + x_4 } [/mm] = [mm] [/mm] = [mm] . [/mm] Diese drei Vektoren sind lin. unabh. also eine Basis des Bildes und damit meine [mm] t_1,...,t_r. [/mm] Die dazugehörigen [mm] s_1,...,s_r [/mm] sind ja dann einfach [mm] s_1 [/mm] = [mm] \vektor{1 \\ 0 \\ 0 \\ 0}, s_2 [/mm] = [mm] \vektor{0 \\ 1 \\ 0 \\ 0}, s_3 [/mm] = [mm] \vektor{0 \\ 0 \\ 1 \\ 0}.
[/mm]
Aber jetzt kommt das Problem. Der Kern ist ja: Ker [mm] \phi_A [/mm] = { a [mm] \vektor{1 \\ 0 \\ 1 \\ 0} [/mm] } und damit ist die Basis des Kerns lin. abh. zu den schon gefundenen [mm] s_1,...,s_3. [/mm] Also wäre das ja keine Basis des [mm] \IF_2^{4 \times 1} [/mm] mehr.
Was mache ich falsch? Es wäre nett, wenn mir da nochmal jemand einen Hinweis geben könnte.
Viele Grüße,
Avinu
|
|
|
|
|
> Hallo Angela, hallo auch an die übrigen Leser,
>
> schon mal vielen lieben Dank für deine Antwort. Allerdings
> muss ich wohl irgendwo einen Fehler machen, den ich aber
> leider nicht finde.
Hallo,
nur eine kleine Unkonzentriertheit...
>
> Es ist ja Im [mm]\phi_A[/mm] = Ax = [mm]\pmat{ x_1 + x_3 + x_4 \\ x_2 + x_4 \\ x_1 + x_2 + x_3 + x_4 \\ x_1 + x_2 + x_4 }[/mm]
> = [mm]
> + [mm]x_3 \vektor{1 \\ 0 \\ 1 \\ 1}[/mm] + [mm]x_4 \vektor{1 \\ 1 \\ 1 \\ 0}>[/mm]
> = [mm]
> + [mm]x_4 \vektor{1 \\ 1 \\ 1 \\ 0}>.[/mm] Diese drei Vektoren sind
> lin. unabh. also eine Basis des Bildes und damit meine
> [mm]t_1,...,t_r.[/mm]
Ja, die kannst Du als [mm] t_1, t_2, t_3 [/mm] nehmen.
> Die dazugehörigen [mm]s_1,...,s_r[/mm] sind ja dann
> einfach [mm]s_1[/mm] = [mm]\vektor{1 \\ 0 \\ 0 \\ 0}, s_2[/mm] = [mm]\vektor{0 \\ 1 \\ 0 \\ 0}, s_3[/mm]
> = [mm]\vektor{0 \\ 0 \\ 1 \\ 0}.[/mm]
Nein. [mm] t_3 [/mm] ist doch die vierte Spalte Deiner Matrix, es wird [mm] \vektor{0\\0\\0\\1} [/mm] darauf abgebildet und nicht [mm] \vektor{0 \\ 0 \\ 1 \\ 0}.
[/mm]
>
> Aber jetzt kommt das Problem. Der Kern ist ja: Ker [mm]\phi_A[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
=
> { a [mm]\vektor{1 \\ 0 \\ 1 \\ 0}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
}
Stimmt.
Deine Probleme sollten jetzt gelöst sein.
LG Angela
> und damit ist die Basis des
> Kerns lin. abh. zu den schon gefundenen [mm]s_1,...,s_3.[/mm] Also
> wäre das ja keine Basis des [mm]\IF_2^{4 \times 1}[/mm] mehr.
>
> Was mache ich falsch? Es wäre nett, wenn mir da nochmal
> jemand einen Hinweis geben könnte.
>
> Viele Grüße,
> Avinu
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 14:22 Mo 02.06.2014 | Autor: | Avinu |
Hallo Angela,
oh, da war ich wohl in der Tat etwas unkonzentriert. Das tut mir Leid. Aber ganz lieben Dank, für deine Hilfe!
Viele Grüße,
Avinu
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 09:26 Mo 02.06.2014 | Autor: | YuSul |
http://www.onlinemathe.de/forum/Quasieinheitsmatrix-2
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:51 Mo 02.06.2014 | Autor: | Avinu |
Hallo YuSul,
die Frage in diesem anderen Forum stammt nicht von mir. Da scheint wohl ein Kommilitone ebenfalls Probleme mit dieser Aufgabe zu haben ;)
Viele Grüße,
Avinu
|
|
|
|