www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesBasis bestimmen bzgl Sesq.linf
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra Sonstiges" - Basis bestimmen bzgl Sesq.linf
Basis bestimmen bzgl Sesq.linf < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis bestimmen bzgl Sesq.linf: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:53 Mi 13.05.2009
Autor: esinum

Aufgabe
Geg: V = [mm] \IC^{4} [/mm]
U = Teilraum, gegeben durch die Gleichungen
[mm] z_{1}-z_{4}=0, z_{1}+\bruch{1}{3}z_{2}+z_{3}=0 [/mm]

Man bestimme eine Basis von [mm] U^{\perp} [/mm] bzgl der Sesquilinearform
[mm] \beta(z,w)=z_{1}\overline{w_{1}}-iz_{2}\overline{w_{2}}+z_{3}\overline{w_{4}}-z_{4}\overline{w_{3}} [/mm]

Hallo ihr lieben hilfsbereiten Matheliebhaber und -liebhaberinnen =)

Ich bin gerade am Wiederholen vom Stoff vom letzten Jahr (von der Zeit wo ich nicht aufgepasst habe.. *schäm*) und hänge gerade an dieser Aufgabe.

Ich muss irgendwie jetzt Vektoren zu U (transponiert) konstruieren, die senkrecht sein müssen..
Ich weiß also im Prinzip wirklich NUR, dass die Antwort über ein LGS kommt..
oder irre ich mich da auch?
=(
Bitte Hilfe

Ich bedanke mich im Vorraus

Liebe Grüße

esi

        
Bezug
Basis bestimmen bzgl Sesq.linf: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:29 Do 14.05.2009
Autor: esinum

kann mir denn nun keiner helfen?

Bezug
        
Bezug
Basis bestimmen bzgl Sesq.linf: Antwort
Status: (Antwort) fertig Status 
Datum: 17:36 Do 14.05.2009
Autor: fred97

Bestimme zunächst eine Basis von U. Soviel verrate ich Dir: dimU = 2, sei also

{ [mm] b_1,b_2 [/mm] } eine Basis von U.

Dann verschafst du dir [mm] b_3 [/mm] und [mm] b_4 [/mm] so, dass

             [mm] b_1,b_2,b_3,b_4 [/mm] linear unabh. sind

und dass

            [mm] $\beta(b_i,b_k) [/mm] = 0$ für i [mm] \in [/mm] {1,2 } und k [mm] \in [/mm] {3,4}

FRED

Bezug
                
Bezug
Basis bestimmen bzgl Sesq.linf: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:07 Do 14.05.2009
Autor: esinum

moment..  die basen wären dann bei mir

[mm] \vektor{0 \\ -3 \\ 1 \\ 0} \vektor{1 \\ -3 \\ 0 \\ 1} \vektor{1 \\ 0 \\ 0 \\ 0} \vektor{0 \\ 1 \\ 0 \\ 0} [/mm]

und nun? den nächsten schritt verstehe ich nicht ganz

Bezug
                        
Bezug
Basis bestimmen bzgl Sesq.linf: Antwort
Status: (Antwort) fertig Status 
Datum: 18:17 Do 14.05.2009
Autor: fred97


> moment..  die basen wären dann bei mir
>  
> [mm]\vektor{0 \\ -3 \\ 1 \\ 0} \vektor{1 \\ -3 \\ 0 \\ 1} \vektor{1 \\ 0 \\ 0 \\ 0} \vektor{0 \\ 1 \\ 0 \\ 0}[/mm]


Jetzt hast Du zwar 4 Vektoren , die l.u. sind, aber die 2. Forderung nicht erfüllen ! Die Vektoren

[mm] \vektor{1 \\ 0 \\ 0 \\ 0} [/mm] , [mm] \vektor{0 \\ 1 \\ 0 \\ 0} [/mm]


sind nicht die einzigen , mit denen  Du ergänzen kannst.

FRED

>  
> und nun? den nächsten schritt verstehe ich nicht ganz


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]