www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraBasis eine Untervektorraumes
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - Basis eine Untervektorraumes
Basis eine Untervektorraumes < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis eine Untervektorraumes: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:15 So 07.01.2007
Autor: speedy1984

Aufgabe
Es sei U = {x = [mm] (x1,x2,x3,x4)^T \in \IR^4 [/mm] | x1 + 2 · x2 + 3 · x3 + 4 · x4 = 0}.
(i) Zeigen Sie, dass U ein Teilraum von [mm] \IR^{4} [/mm] ist.
(ii) Bestimmen Sie eine Basis von U.
(iii) Welche Dimension hat U?

Ich habe eine Frage zu ii) und zwar weiss ich nicht so genau wie ich die Basis in diesem Fall bestimmen kann. Ich habe bereits versucht ein erzeugendensystem zu finden aber das ist keine Basis. Ich wäre Dankbar wenn mir jemand einen Tipp für einen Lösungsweg geben könnte.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Basis eine Untervektorraumes: Antwort
Status: (Antwort) fertig Status 
Datum: 19:04 So 07.01.2007
Autor: Zwerglein

Hi, speedy,

> Es sei U = [mm] \{ x = (x1,x2,x3,x4)^T \in \IR^4 | x1 + 2 x2 + 3 x3 + 4 x4 = 0 \}. [/mm]
>  (i) Zeigen Sie, dass U ein Teilraum von [mm]\IR^{4}[/mm] ist.
>  (ii) Bestimmen Sie eine Basis von U.
>  (iii) Welche Dimension hat U?
>  Ich habe eine Frage zu ii) und zwar weiss ich nicht so
> genau wie ich die Basis in diesem Fall bestimmen kann. Ich
> habe bereits versucht ein erzeugendensystem zu finden aber
> das ist keine Basis. Ich wäre Dankbar wenn mir jemand einen
> Tipp für einen Lösungsweg geben könnte.

Im Grunde ist x1 + 2 · x2 + 3 · x3 + 4 · x4 = 0
doch nichts anderes als EINE Gleichung mit VIER Unbekannten.
Demnach hast Du 3 Freiheitsgrade, z.B.:
[mm] x_{2} [/mm] = [mm] \lambda; [/mm]  
[mm] x_{3} [/mm] = [mm] \mu; [/mm]  
[mm] x_{4} [/mm] = [mm] \nu. [/mm]

Daraus erhältst Du:
[mm] x_{1} [/mm] = - 2 · [mm] x_{2} [/mm] - 3 · [mm] x_{3} [/mm] - 4 · [mm] x_{4} [/mm]
[mm] x_{1} [/mm] = - 2 · [mm] \lambda [/mm] - 3 · [mm] \mu [/mm] - 4 · [mm] \nu [/mm]

Vektoriell geschrieben:
[mm] \vektor{x_{1} \\ x_{2} \\ x_{3} \\ x_{4} } [/mm] =  [mm] \vektor{- 2 \lambda - 3 \mu - 4 \nu \\ \lambda \\ \mu \\ \nu } [/mm]

Oder übersichtlicher:

[mm] \vec{x} [/mm] = [mm] \lambda*\vektor{-2 \\ 1 \\ 0 \\ 0} [/mm] +  [mm] \mu*\vektor{-3 \\ 0 \\ 1 \\ 0} [/mm] + [mm] \nu*\vektor{-4 \\ 0 \\ 0 \\ 1} [/mm]

Die Vektoren auf der rechten Seite bilden eine mögliche Basis des Vektorraums, der offensichtlich die Dimension 3 hat.

mfG!
Zwerglein

Bezug
                
Bezug
Basis eine Untervektorraumes: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:50 So 07.01.2007
Autor: speedy1984

Ah okay danke ;) Jetzt kann ich die Aufgabe lösen...

Vielen Dank für die Hilfe!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]