www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeBasis eines Untervektorraumes
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Gleichungssysteme" - Basis eines Untervektorraumes
Basis eines Untervektorraumes < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis eines Untervektorraumes: Basis, UVR
Status: (Frage) beantwortet Status 
Datum: 15:56 Sa 20.12.2008
Autor: farnold

Aufgabe
sei { ( x[1], x[2], x[3], x[4], x[5] )€ [mm] IR^4 [/mm] : x[1] + 3x[2] + 2x[4] = 0 und 2x[1] + x[2] + x[3] = 0 }

Aufgabe:
Geben sie für folgende Vektorräume jeweils eine Basis an  

Halli, Hallo

habe ein Problem mit dieser Aufgabe:

1.Frage: hieße die Aufgabe wiefolgt:

sei { ( x[1], x[2], x[3], x[4],)€ [mm] IR^4 [/mm] : x[1] + 3x[2] + 2x[4] = 0  }
könnte ich diese dann wiefolgt lösen:
x[1] = -3x[2] - 2x[4] => möglicher Vektor ( 0,-2,0,3)
oder
x[4] = -0.5x[1] - 1.5x[2] => Vektor: (-3,1,0,0)
oder
x[2] = -1/3 x[1] - 2/3 x[4] => Vektor: (-2,0,0,1)
und
Vektor (0,0,1,0)

nun noch schauen welche Vektoren l.a. diese rauswerfen und fertig ist die Basis => 3 l.u Vektoren

2. Frage: heißt die Frage nun { ( x[1], x[2], x[3], x[4], x[5] )€ [mm] IR^4 [/mm] : x[1] + 3x[2] + 2x[4] = 0 und 2x[1] + x[2] + x[3] = 0 }, also wie oben gestellt

dann erstelle ich erstmal ein Gleichungssystem das wiefolgt aussieht:

1 3 0 2 | 0       I
2 1 1 0 | 0       II

nun noch auf zeilenstufenform brignen:
I *-2 => erste mit 2. Zeile addieren ergibt

1 3 0 2 | 0       I
0-5 1 -4| 0       II

nun kann ich ja die 2. Zeile nach einem beliebigen x[i] i€{1,...,4} auflösen
(Frage: nur nach einem x[i] oder nach x[i] )

also z.B x[3] = 5x[2] + 4x[4], diese setzen wir in die erste Zeile ein, das ergibt
1x[1] + 3x[2] + 0(5x[2] + 4x[4]) + 2x[4] = 0
<=>  1x[1] + 3x[2] + 0 + 2x[4] = 0 (damit fällt die 2. Zeile aber irgendwie wieder raus)

irgendwas mach ich falsch :((
wäre super lieb wenn ihr mir erklären/vorrechnen könnt wie man da eine Basis bekommt.

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: ( nicht exakt dieselbe Frage)
http://www.uni-protokolle.de/foren/viewt/216147,0.html

        
Bezug
Basis eines Untervektorraumes: Antwort
Status: (Antwort) fertig Status 
Datum: 16:20 Sa 20.12.2008
Autor: leduart

Hallo
so wie die Frage gestellt ist sind die x[i] doch Vektoren und nicht Komponenten von Vektoren.
Dann musst du deine Basis aus Linearkomb. der x[i] herstellen.
Vielleicht solltest du die Orginalaufgabe posten. was du hier und im anderen forum machst scheint mir nichts mit der soweit gestellten Aufgabe zu tun zu haben.
Gruss leduart

Bezug
                
Bezug
Basis eines Untervektorraumes: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:37 Sa 20.12.2008
Autor: farnold

Aufgabe
Geben sie für folgenden Vektorraum jeweils eine Basis an:
U = { ( x[1], x[2], x[3], [mm] x[4])\in\IR^4 [/mm] : x[1] + 3x[2] + 2x[4] = 0 und 2x[1] + x[2] + x[3] = 0 }  

U ist ja nun ein Untervektorraum des [mm] \IR^4 [/mm] der die Vektoren enthält die folgende Bedingungen erfüllen:
x[1] + 3x[2] + 2x[4] = 0 und 2x[1] + x[2] + x[3] = 0

jetzt sind ja die x[i] keine Vektore sonder nur Komponenten von Vektoren, oder nicht?

die Lösung ist : (3,-1,-5,0) und (-1,1,1,-1) bilden eine Basis des UVR

ich weiß nur nicht wie man daraufkommt

Bezug
                        
Bezug
Basis eines Untervektorraumes: Antwort
Status: (Antwort) fertig Status 
Datum: 17:16 Sa 20.12.2008
Autor: Al-Chwarizmi


> Geben sie für folgenden Vektorraum jeweils eine Basis an:
> U =  [mm] $\{ ( x[1], x[2], x[3], x[4])\in\IR^4$ : $\ x[1] + 3x[2] + 2x[4] = 0$ und $\ 2x[1] + x[2] + x[3] = 0\}$ [/mm]  
> U ist ja nun ein Untervektorraum des [mm] $\IR^4$ [/mm] der die Vektoren
> enthält die folgende Bedingungen erfüllen:
>  x[1] + 3x[2] + 2x[4] = 0 und 2x[1] + x[2] + x[3] = 0
>
> jetzt sind ja die x keine Vektoren sondern nur Komponenten
> von Vektoren, oder nicht?

> die Lösung ist : (3,-1,-5,0) und (-1,1,1,-1) bilden eine
> Basis des UVR

       "Die" Lösung gibt es natürlich nicht !

> ich weiß nur nicht wie man daraufkommt


Dann ist die Aufgabe wohl einfacher als wir alle
dachten. Als zusätzliche Vereinfachung schlage
ich vor, die 4 Koordinaten mit a,b,c,d zu bezeichnen.
Damit ist

      [mm]\ U=\{(a,b,c,d)\in\IR^4\ |\ a+3b+2d=0 \wedge 2a+b+c=0\}[/mm]

Basen für U gibt es natürlich viele; es genügt,
zwei linear unabhängige Vektoren zu finden,
von welchen jeder die beiden Gleichungen
erfüllt. Du könntest zum Beispiel wählen:

c=1 und d=0 für einen ersten Basisvektor
(zugehörige a und b aus den Gleichungen berechnen !)

c=0 und d=1 für den zweiten
(ebenfalls a und b dazu berechnen)


LG



  


Bezug
                                
Bezug
Basis eines Untervektorraumes: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:29 Sa 20.12.2008
Autor: farnold


Bezug
                                
Bezug
Basis eines Untervektorraumes: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 17:36 Sa 20.12.2008
Autor: farnold

/*
*Frage hat sich geklärt
*/

heißt das nun das:

bei meinem anderen Beispiel:
sei {  ( x[1], x[2], x[3], x[4])€ [mm] IR^4 [/mm]  : x[1] + 3x[2] + 2x[4] = 0  }

der folgende Rechenweg doch richtig/möglich ist:
x[1] = -3x[2] - 2x[4] => möglicher Vektor ( 0,-2,0,3)
oder
x[4] = -0.5x[1] - 1.5x[2] => Vektor: (-3,1,0,0)
oder
x[2] = -1/3 x[1] - 2/3 x[4] => Vektor: (-2,0,0,1)
und
Vektor (0,0,1,0)

Diese 4  Vektoren auf l.u. überprüfe, etc. doch richtig?

Zu:
      $ \ [mm] U=\{(a,b,c,d)\in\IR^4\ |\ a+3b+2d=0 \wedge 2a+b+c=0\} [/mm] $

woher weißt du das es genau 2 l.u. Vektoren gibt?
gibt es um festzustellen wie eine mögliche Basis aussieht keinen algorithmus wie man da allgemein vorgehen kann (es könnte ja sein das noch eine 3. Bedinung erfüllt sein muss)?




Bezug
                                        
Bezug
Basis eines Untervektorraumes: Antwort
Status: (Antwort) fertig Status 
Datum: 20:18 Sa 20.12.2008
Autor: Al-Chwarizmi

hallo farnold,

bei deiner Frage in deinem allerersten post hat mich
vor allem das x[5] irritiert, das dort noch herumgeisterte


> heißt das nun dass:
>  
> bei meinem anderen Beispiel:
>  sei {  ( x[1], x[2], x[3], [mm] x[4])\in\IR^4 [/mm] : x[1] + 3x[2] + 2x[4] = 0  }

also nur eine lineare Bedingung im [mm] \IR^4 [/mm] : in diesem
Fall wäre die Erfüllungsmenge ein dreidimensionaler
Unterraum, also 3 Basisvektoren nötig

  

> der folgende Rechenweg doch richtig/möglich ist:
>  x[1] = -3x[2] - 2x[4] => möglicher Vektor ( 0,-2,0,3)

>  oder
>  x[4] = -0.5x[1] - 1.5x[2] => Vektor: (-3,1,0,0)

>  oder
>  x[2] = -1/3 x[1] - 2/3 x[4] => Vektor: (-2,0,0,1)

>  und
>  Vektor (0,0,1,0)
>
> Diese 4  Vektoren auf l.u. überprüfen, etc. doch richtig?      [ok]

  aber Vorsicht: höchstens 3 dieser 4 Vektoren können
  linear unabhängig sein !

>  
> Zu:
>        [mm]\ U=\{(a,b,c,d)\in\IR^4\ |\ a+3b+2d=0 \wedge 2a+b+c=0\}[/mm]
>  
> woher weißt du dass es genau 2 l.u. Vektoren gibt?

Da die beiden einschränkenden linearen Gleichungen
linear unabhängig sind, wird die Dimension des Raumes
von 4 um 2 erniedrigt. Für den Lösungsraum bleibt also
die Dimension 2.

> gibt es um festzustellen wie eine mögliche Basis aussieht
> keinen algorithmus wie man da allgemein vorgehen kann
> (es könnte ja sein dass noch eine 3. Bedinung erfüllt
> sein muss)?

Da ich keinen "Standard"-Algorithmus kenne, überlasse
ich die Antwort auf diese Frage lieber jemand anderem ...
Es gibt aber wie schon gesagt keine eindeutig bestimmbare
Lösung. Es gibt unendlich viele mögliche Basen.


LG




Bezug
                                                
Bezug
Basis eines Untervektorraumes: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:29 So 21.12.2008
Autor: farnold


> Da die beiden einschränkenden linearen Gleichungen
> linear unabhängig sind, wird die Dimension des Raumes
> von 4 um 2 erniedrigt. Für den Lösungsraum bleibt also
> die Dimension 2.

axo, ja klar, jetzt seh ichs auch, ich kann ja bei jeder Gleichung eine Komponente in Abhängigkeit der anderen beiden darstellen,jede Gleichung hat ergo max. die Dimension 2, habe ich jeweil die Basen der beiden Gleichungen, so bestimme ich eifnach den Durchschnitt/schnitt^^

vielen dank! :)



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]