www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeBasis ergänzen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Moduln und Vektorräume" - Basis ergänzen
Basis ergänzen < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis ergänzen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 14:21 Di 28.02.2012
Autor: ehaefner

Aufgabe
Im reellen Vektorraum [mm] \IR^4 [/mm] seien die drei Vektoren
[mm] v_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix} , v_2 = \begin{pmatrix} 1 \\ 2 \\ 2 \\ 3 \end{pmatrix} , v_3 = \begin{pmatrix} 1 \\ 2 \\ 5 \\ 6 \end{pmatrix} [/mm]

gegeben. Weiter sei [mm] V = v_1, v_2, v_3  \subseteq \IR^4 [/mm] der von diesen Vektoren aufgespannte Unterraum.
a) Zeigen Sie, dass v1, v2 eine Basis von V ist und stellen Sie v3 als Linearkombination von v1 und v2 dar.
b) Ergänzen Sie v1, v2 zu einer Basis von [mm] \IR^4 [/mm].
c) Bestimmen Sie (bezüglich des Standardskalarprodukts auf [mm] \IR^4 [/mm] eine Orthonormalbasis
für das orthogonale Komplement  von V in [mm] \IR^4 [/mm].



Das ist eine Aufgabe aus dem Staatsexamen von 2007.
Also a) war gar kein Problem.
Das Ergebnis der Umformungen war folgendes:

[mm] \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} [/mm]  Damit weiß ich, v1 und v2 sind linear unabhängig und [mm] v_3 = 3*v_1-2*v_2 [/mm]

Bei b) dachte ich dann ich kann als Begründung den Basisergänzungssatz nehmen und die Einheitsvektoren [mm] e_3 \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} [/mm] und [mm] e_4 \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} [/mm] wählen, da man ja mit a) erkennt dass die dann zu v1 und v2 linear unabhängig sind und ich somit eine Basis habe.

Dann habe ich aber meine Lösung mit der Musterlösung verglichen und der Dozent hat es ganz anders, und für mich völlig unverständlich begründet. Und zwar wie folgt: Für

[mm] C= (v_1, v_2, e_1, e_2) \in \IR^(4x4) [/mm] gilt:

[mm] det(C)= \begin{vmatrix} 1 & 1 & 1 & 0 \\ 2 & 2 & 0 & 1 \\ 3 & 2 & 0 & 0 \\ 4 & 3 & 0 & 0 \end{vmatrix} [/mm] = ... (Die Berechnung spar ich mir hier) [mm] =1 \not= 0 [/mm] . Damit ist die Matrix invertierbar und die Spalten bilden eine Basis.

Muß ich das so begründen? Er meint ja sicher damit, dass eine invertierbare Matrix vollen Rang besitzt und somit alle Vektoren linear unabhängig sind und somit eine Basis bilden, oder? Geht meine Begründung nicht? Wäre schön wenn mir da jemand weiterhelfen würde!

c) war wieder kein Problem...

Schon mal vielen Dank!




        
Bezug
Basis ergänzen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:33 Di 28.02.2012
Autor: angela.h.b.


> Im reellen Vektorraum [mm]\IR^4[/mm] seien die drei Vektoren
>  [mm]v_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix} , v_2 = \begin{pmatrix} 1 \\ 2 \\ 2 \\ 3 \end{pmatrix} , v_3 = \begin{pmatrix} 1 \\ 2 \\ 5 \\ 6 \end{pmatrix} [/mm]
>  
> gegeben. Weiter sei [mm]V = v_1, v_2, v_3  \subseteq \IR^4[/mm]
> der von diesen Vektoren aufgespannte Unterraum.
>  a) Zeigen Sie, dass v1, v2 eine Basis von V ist und
> stellen Sie v3 als Linearkombination von v1 und v2 dar.
>  b) Ergänzen Sie v1, v2 zu einer Basis von [mm]\IR^4 [/mm].
>  c)
> Bestimmen Sie (bezüglich des Standardskalarprodukts auf
> [mm]\IR^4[/mm] eine Orthonormalbasis
>  für das orthogonale Komplement  von V in [mm]\IR^4 [/mm].
>  
>
> Das ist eine Aufgabe aus dem Staatsexamen von 2007.
> Also a) war gar kein Problem.
> Das Ergebnis der Umformungen war folgendes:
>  
> [mm]\begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}[/mm]
>  Damit weiß ich, v1 und v2 sind linear unabhängig und [mm]v_3 = 3*v_1-2*v_2[/mm]
>  
> Bei b) dachte ich dann ich kann als Begründung den
> Basisergänzungssatz nehmen und die Einheitsvektoren [mm]e_3 \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}[/mm]
> und [mm]e_4 \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}[/mm]
> wählen, da man ja mit a) erkennt dass die dann zu v1 und
> v2 linear unabhängig sind und ich somit eine Basis habe.

Hallo,

der Basisergänzungssatz sagt Dir, daß Du durch zwei geeignetet Einheitsvektoren zu einer Basis [mm] des\IR^4 [/mm] ergänzen kannst.
Daß [mm] e_3 [/mm] und [mm] e_4 [/mm] passende ergänzende Vektoren sind, muß begründet werden.
Dieses "man erkennt mit a)" müßtest Du etwas genauer ausführen.
Wenn Du dies tust, also begründest, daß die 4 linear unabhängig sind, bist Du fertig.
Du könntest z.B. die Matrix [mm] (v_1, v_2, e_3, e_4) [/mm] auf ZSF bringen und sagen: der Rang=4, also 4 linear unabhängige Spalten.

>  
> Dann habe ich aber meine Lösung mit der Musterlösung
> verglichen und der Dozent hat es ganz anders, und für mich
> völlig unverständlich begründet. Und zwar wie folgt:
> Für
>
> [mm]C= (v_1, v_2, e_1, e_2) \in \IR^(4x4)[/mm] gilt:
>  
> [mm]det(C)= \begin{vmatrix} 1 & 1 & 1 & 0 \\ 2 & 2 & 0 & 1 \\ 3 & 2 & 0 & 0 \\ 4 & 3 & 0 & 0 \end{vmatrix} [/mm]
> = ... (Die Berechnung spar ich mir hier) [mm]=1 \not= 0[/mm] . Damit
> ist die Matrix invertierbar und die Spalten bilden eine
> Basis.
>  
> Muß ich das so begründen?

Nein. Wie Du es begründest, ist schnuppe.

LG Angela


> Er meint ja sicher damit, dass
> eine invertierbare Matrix vollen Rang besitzt und somit
> alle Vektoren linear unabhängig sind und somit eine Basis
> bilden, oder? Geht meine Begründung nicht? Wäre schön
> wenn mir da jemand weiterhelfen würde!
>  
> c) war wieder kein Problem...
>  
> Schon mal vielen Dank!
>  
>
>
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]