www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenBasis mit GJA
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Matrizen" - Basis mit GJA
Basis mit GJA < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis mit GJA: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 14:08 So 14.01.2007
Autor: BWLDino

Aufgabe
Bestimmen Sie eine Basis der Lösungsmenge des homogenen Gleichungssystems mit dem Gauß-Jordan-Algorithmus! Geben Sie zwei weitere Basen an!
[mm] \pmat{ 2 & 0 & \wurzel{7} & 0 & 5 \\ 3 & 0 & 0 & 0 & 3 \\ 5 & 0 & 0 & 0 & 2 }*\vec{x}=\vektor{0 \\ 0 \\ 0} [/mm]

So, wenn ich das mit dem GJA ausrechen bekomme ich als Endschema:
-18   0    0    0   0
0     0    0    0   -9
0     0  [mm] -18*\wurzel{7} [/mm]   0   0

Ausgezeichnet wurden die drei Elemente, die jetzt noch [mm] \not= [/mm] 0 sind
Aber wie muss ich das Endschema jetzt interpretieren das ich zunächst auf eine Basis komme und dann noch zwei weitere finden kann?

MfG Dino

        
Bezug
Basis mit GJA: Antwort
Status: (Antwort) fertig Status 
Datum: 14:47 So 14.01.2007
Autor: DaMenge

Hallo,


> So, wenn ich das mit dem GJA ausrechen bekomme ich als
> Endschema:
>  -18   0    0    0   0
>   0     0    0    0   -9
>   0     0  [mm]-18*\wurzel{7}[/mm]   0   0
>  

Also ich hab das jetzt NICHT nachgerechnet, aber du musst ja schon Zeilenstufenform erreichen - dies bedeutet hier also noch eine Vertauschung der Zeilen (was die reihenfolge der Variablen aber nicht aendert), also als Matrix geschrieben:
[mm] $\pmat{-18&0&0&0&0\\0&0&-18*\wurzel{7}&0&0\\0&0&0&0&-9}*\vektor{x_1\\x_2\\x_3\\x_4\\x_5}=\vektor{0\\0\\0}$ [/mm]

du siehst also, dass nur [mm] $x_1=x_3=x_5=0$ [/mm] eindeutig festgelegt sind, also waere ein allgemeiner Loesungsvektor doch: (s und t beliebig:)
[mm] $\vektor{0\\s\\0\\t\\0}=s*\vektor{0\\1\\0\\0\\0}+t*\vektor{0\\0\\0\\1\\0}$ [/mm]

und hieran siehst du schon zwei linear unabhaengige Vektoren, die den Loesungsraum erzeugen...
jetzt such dir noch zwei andere Basen, die denselben raum erzeugen...

viele Gruesse
DaMenge

Bezug
                
Bezug
Basis mit GJA: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:59 So 14.01.2007
Autor: BWLDino

Vielen Dank für die schnelle Antwort...
wie kann ich daraus jetzt zwei weiter Basen erzeugen?
Einfach statt der 1 eine andere Zahl einsetzen? Also so:
[mm] s*\vektor{0 \\ 5 \\ 0 \\ 0 \\ 0}+t*\vektor{0 \\ 0 \\ 0 \\ 5 \\ 0} [/mm] und [mm] s*\vektor{0 \\ 8 \\ 0 \\ 0 \\ 0}+t*\vektor{0 \\ 0 \\ 0 \\ 8 \\ 0} [/mm] ??

Bezug
                        
Bezug
Basis mit GJA: Antwort
Status: (Antwort) fertig Status 
Datum: 15:02 So 14.01.2007
Autor: DaMenge

Hi,

ja das waeren zwei weitere Basen, aber ein wenig langweilige
;-)

eine weitere waere doch auch :
$ [mm] s'\cdot{}\vektor{0 \\ 2 \\ 0 \\ 1 \\ 0}+t'\cdot{}\vektor{0 \\ 0 \\ 0 \\ 1 \\ 0} [/mm] $

und sowas eben...

viele Gruesse
DaMenge

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]