www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenBasiswechsel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Reelle Analysis mehrerer Veränderlichen" - Basiswechsel
Basiswechsel < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basiswechsel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:29 Mo 23.11.2009
Autor: kunzmaniac

Aufgabe
Sei S eine symmetrische reelle nxn Matrix, die zugeordnete quadratische Form sein positiv definit, man zeige, dass

$X := [mm] \{ x\in \IR^{n} | x^{T}Sx=c, c > 0\}$ [/mm]

eine n-1 dimensionale eingebettete Mannigfaltikeit ist.

Hallo,

meine Gedanken gingen in die Richtung für S eine geeigntete Basis zu wählen, so dass  S diagonal (Spektralsatz).
Dann habe ich eine wunderbare Nebenbedingungsmenge:

[mm] $\lambda_{1}*x_{1}^{2}+...+\lambda_{n}*x_{n}^{2}-c=0$ [/mm]


Fasse ich die als Nullstellenmenge einer Funktion f auf, ist die Jacobimatrix

$J(f, x) = [mm] (2*\lambda_{1}*x_{1}, [/mm] ..., [mm] 2*\lambda_{n}*x_{n})$ [/mm]

und die ist nat. regulär für x aus X.

damit hätte ich dann auch eine n-1 dim. Mnfkt (wie kürzt man dieses schlimme Wort eigentlich elegant ab?)

Was ist mit der Basistransformation am Anfang? Die kann doch an der Mnfkt nichts ändern, oder?

Wäre es eine Alternative, die Ellipse (X ist doch ein n-dim Ellipsoid, oder) auf die Einheitssphäre zurückzubiegen und dann zu schließen, dass es ich um eine n-1 dim. Mnfkt handelt?

vielen Dank für Eure Hilfe

        
Bezug
Basiswechsel: Antwort
Status: (Antwort) fertig Status 
Datum: 01:50 Di 24.11.2009
Autor: pelzig

Würde es so aufschreiben: Schreibe [mm]S=T^TDT[/mm] für eine Diagonalmatrix D und [mm] $T\in GL(\IR^n)$. [/mm] Die Abbildung [mm] $\varphi:\IR^n\ni x\mapsto Tx\in\IR^n$ [/mm] ist also ein [mm]C^\infty[/mm]-Diffeomorphismus. Nach deinem Argument ist [mm] $\tilde{X}=\{x\in\IR^n\mid x^TDx=c\}$ [/mm] eine (n-1)-dim MF (so kürze ich das immer ab, wenn ich hinreichend lange darüber rede). Nun ist aber [mm] $$\varphi^{-1}(\tilde{X})=\{\varphi^{-1}(x)\in\IR^n\mid x^TDx=c\}=\{x\in\IR^n\mid \varphi(x)^TD\varphi(x)=c\}=\{x\in\IR^n\mid x^TT^TDTx=c\}=X$$ [/mm] Also ist insbesondere auch X als Bild einer (n-1)-dim MF unter einem Diffeomorphismus eine (n-1)-dim MF.

Aber kann man das nicht auch direkt, also ohne diese Basistrafo machen? Bedeutet positiv definit nicht, dass die entscheidende Jacobimatrix vollen Rang hat? Ist leider schon spät... :-)

Gruß, Robert

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]