www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStatistik (Anwendungen)Bed.E-Wert/ Kontrolle der FDR
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Statistik (Anwendungen)" - Bed.E-Wert/ Kontrolle der FDR
Bed.E-Wert/ Kontrolle der FDR < Statistik (Anwend.) < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bed.E-Wert/ Kontrolle der FDR: Formale Fragen zum Beweis
Status: (Frage) überfällig Status 
Datum: 13:53 Mo 12.10.2009
Autor: Estha

Guten Tag alle zusammen!

Dies ist mein erster Beitrag hier im Forum, und dich hoffe, dass ich ihr mir helfen könnt!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Das Thema ist die False Discovery Rate ( FRD )  und es geht sich um ein Lemma, bei dessen Beweisführung ich hauptsächlich Probleme habe, wenn es sich ums Arbeiten mit bedingte Erwartungswertn geht.
Ich werde nur den ersten Teil des Beweis posten, da er 1. insgesamt viel zu lang ist und 2. ich nur im 1. Abschnitt meine Schwierigkeiten habe.
Falls ich noch Extra-Infos posten soll, bitte bescheid geben , danke!

Vorab:

Betrachtet wir das Testproblem [mm] H_1, ... , H_n [/mm] mit dem dazugehörigen p - Werten [mm] P_1, ... , P_n [/mm]
Mit [mm] Q_n := \bruch{V_n }{ V_n + S_n } = \bruch{V_n}{R_n} [/mm] ist der Anteil der abgelehnten Hypothesen, die irrtümlich abgeleht wurden gemeint.


LEMMA:
Sei [mm] n \in \IN [/mm] so, dass genau k Nullhypothesen wahr und
[mm] \bar{k} = n - k [/mm] Nullhypothesen falsch sind.
Für jedes [mm] 0 \le k \le n [/mm] von unabhängigen p-Werten ( die zu den wahren Hypothesen gehören ) und für jede Realisierung, die die [mm] \bar{k} [/mm] p -Werte ( die zu den falschen Hypothese gehören ) annehmen können, erfüllt das lineare "step up" Verfahren von Benjamini & Hochberg die folgende Ungleichung

[mm] E ( Q_n | P_{k+1} = p_1 , ... , P_n = p_{ \bar{k} } ) \le \bruch{k}{n} \alpha [/mm]

Der Beweis folgt mit Hilfe der Induktion:

BEWEIS:

1. Induktionsanfang für n = 1 ist klar.

2. Induktionsannahme:
  
Für [mm] k \le n [/mm] gilt:

  [mm] E ( Q_n | P_{k+1} = p_1 , ... , P_n = p_{ \bar{k} } ) \le \bruch{k}{n} \alpha [/mm]

3. Induktionsschluss :

Z.z. das Lemma gilt für jedes [mm] k \le n+1 [/mm]
Somit ist also zu zeigen, dass

[mm] E ( Q_n | P_{k+1} = p_1 , ... , P_n = p_{ \bar{k} } ) \le \bruch{k}{n+1} \alpha [/mm]

Fallunterscheidung:

1.Fall:

Sei k = 0, d.h  alle Hypothesen sind falsch. Da somit [mm] V_n = 0 [/mm] ist
[mm] Q_n = 0 [/mm]

[mm] \Rightarrow E ( Q_n | P_{k+1} = p_1 , ... , P_n = p_{ \bar{k} } ) = 0 \le \bruch{k}{n +1 } \alpha [/mm]


2. Fall :

Sei k > 0, d.h. mind. eine Hypothese ist wahr.
Bezeichne nun [mm] P'_i [/mm] für [mm] i = 1 , ... , k [/mm] die p - Werte des wahren Hypothesen, die unter der Hypothese gleichverteilt auf (0,1).
Bezeichne [mm] P'_{(k)} [/mm] den größten p-Wert, also [mm] P'_{(k)} := \max{(P'_1, ... , P'_k )} [/mm], mit der folgenden Verteilungsfunktion:
(*)[mm] \begin{matrix} F_{P'_{(k)}} )p) &=& P ( \max(P'_1, ... , P'_k ) \le p ) \\ \ &=& P ( P'_1 \le p, ... , P'_k \le p ) \\ \ &=& \left[ P ( P'_1 \le p ) \right]^k \\ \ &=& p^k 1_{(0,1)} (p) + 1_{[1, \infty) } (p) \end{matrix} [/mm]




1. Fragen :

Was ist das kleine p?
Womit kann man das 2. Gleichheitszeichen begründen?
Gilt das 3. Gleichheitszeichen wegen den Unabhängigkeit der p-Werte?
Warum betrachten wir jetzt in der 3. Zeile von (*) nur noch das [mm] P'_1 [/mm] ?



Bezeichne man nur mit [mm] p_1 \le ... \le p_{\bar{k}} [/mm] die geordneten Realisierungen der p -Werte der falschen Hypothesen.
Sei [mm] j_0 [/mm] die Anzahl der falschen Nullhypothesen, die nach dem Verfahren von Benjamini & Hochberg abgelehnt wurden.
Also [mm] sei [mm] j_0 [/mm] das größte j mit [mm] 0 \le j \e \bar{k} [/mm] für welches gilt:
[mm] p_j \le \bruch{k +j }{n + 1 } \alpha [/mm]
Bezeichne [mm] p'' := \bruch{k +j_0 }{n + 1 } \alpha [/mm] den kritischen Wert des Verfahrens.
Unter der Bedingung, dass [mm] P'_{(k)} = p [/mm] gilt:

[mm] E ( Q_n | P_{k+1} = p_1 , ... , P_n = p_{ \bar{k} } ) [/mm]

(**) [mm] = \integral_{0}^1 E ( Q_n | P'_{(k)} = p , P_{k+1} = p_1 ... , P_n = p_{ \bar{k} } ) f_{P'_{(k)}} (p) dp [/mm]

(***)[mm] = \integral_{0}^{p''} E ( Q_n | P'_{(k)} = p , P_{k+1} = p_1 ... , P_n = p_{ \bar{k} } ) f_{P'_{(k)}} (p) dp + \integral_{p''}^1 E ( Q_n | P'_{(k)} = p , P_{k+1} = p_1 ... , P_n = p_{ \bar{k} } ) f_{P'_{(k)}} (p) dp [/mm]  

2. Fragen :

Ich verstehe leider dieGültigkeit des 1. Gleichheitszeichen (**) nicht :-( ..
Irgendwie seh ich nicht die Gleichheit, obwohl mir klar ist, dass wir über (0,1) integrieren wegen der Gleichverteilung mit der zugehörigen Dichte ..



Jetzt betrachte das erste Intergral aus (***).
Hier ist [mm] p \le p'' [/mm] , da sonst das Integral Null wäre.
Daher werden alle [mm] k + j_0 [/mm] Hypothesen nach dem Verfahren abgelehnt und somit ist dann [mm] Q_n \equiv \bruch{k}{k + j_0 } [/mm].
Dann folgt:

[mm] \integral_{0}^{p''} E ( Q_n | P'_{(k)} = p , P_{k+1} = p_1 ... , P_n = p_{ \bar{k} } ) f_{P'_{(k)}} (p) dp [/mm]

[mm] = \integral_{0}^{p''} E (\bruch{k}{k + j_0 } | P'_{(k)} = p , P_{k+1} = p_1 ... , P_n = p_{ \bar{k} } ) k p^{(k-1)} dp [/mm]

(****) [mm] = \integral_0^{p''} \bruch{k}{k + j_0 } k p^{(k-1)} dp [/mm]

[mm] = \bruch{k}{k + j_0 } (p'')^k [/mm]

[mm] \bruch{k}{n+1} \alpha (p'')^{(k-1)} [/mm]


3. Frage:

Warum gilt (**** )? Nach welcher Eigenschaft / Regel des bed. E-Wertes folgt diese Umformungß


....... ( den Rest dieses sehr langen Beweises kann ich rcht gut nachvollziehen.)

Ich hoffe, dass mir jemand ei diesen formalen Unklarheiten helfen kann!?

Vielen Dank!

Viele Grüße
Estha





        
Bezug
Bed.E-Wert/ Kontrolle der FDR: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Di 20.10.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]