Bedingte Wahrscheinlichkeit < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
|
Aufgabe | Eine Urne enthält 3 grüne und 2 rote Kugel. 2 Kugel werden ohne Zurücklegen gezogen.
Es werden 4 Ereignisse definiert:
A. Grün wird im ersten Zug gezogen
B. Grün wird im zweiten Zug gezogen
C. Grün wird im ersten und im zweiten Zug gezogen
D. Grün im zweiten Zug unter der Bedingung, dass grün bereits im ersten Zug gezogen wurde.
Zu bestimmen sind die Wahrscheinlichkeiten aller Ereignisse.
|
Meine Frage lautet: Lässt sich mit diesen Angaben eine Vierfeldertafel erstellen? Dies würde mir helfen, die Bedingten Wahrscheinlichkeiten der Ereignisse auch anschaulich zu lösen.
Mein Versuch der Vierfeldertafel sieht so aus:
1. Zug 2. Zug Summe
-------------------------------------------------
grün 1 2 3
nicht grün 1 1 2
-------------------------------------------------
Summe 2 3 5
In Stochastik muss ich noch viel lernen, bitte also um Nachsicht für diese Aufgabe.
Danke schon mal im Voraus
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:37 Sa 15.02.2014 | Autor: | Fulla |
> Eine Urne enthält 3 grüne und 2 rote Kugel. 2 Kugel
> werden ohne Zurücklegen gezogen.
> Es werden 4 Ereignisse definiert:
> A. Grün wird im ersten Zug gezogen
> B. Grün wird im zweiten Zug gezogen
> C. Grün wird im ersten und im zweiten Zug gezogen
> D. Grün im zweiten Zug unter der Bedingung, dass grün
> bereits im ersten Zug gezogen wurde.
>
> Zu bestimmen sind die Wahrscheinlichkeiten aller
> Ereignisse.
Hallo wolfgangmax!
> Meine Frage lautet: Lässt sich mit diesen Angaben eine
> Vierfeldertafel erstellen? Dies würde mir helfen, die
> Bedingten Wahrscheinlichkeiten der Ereignisse auch
> anschaulich zu lösen.
>
> Mein Versuch der Vierfeldertafel sieht so aus:
>
> 1. Zug 2. Zug
> Summe
> -------------------------------------------------
> grün 1
> 2 3
>
> nicht grün 1 1
> 2
> -------------------------------------------------
> Summe 2
> 3 5
So kannst du das mit der Vierfeldertafel nicht machen. Wo ist z.B. das Feld für "im ersten Zug grün und im zweiten Zug rot"? Und wie kommst du auf die Zahlen?
Eine Möglichkeit wäre:
[mm]\begin{tabular}{r|c|c|c} & 2. Zug grün & 2. Zug rot & \hspace{1.5cm}\ \\ \hline
1. Zug grün & & & 3/5 \\ \hline
1. Zug rot & & & 2/5\\ \hline
& & & 1 \end{tabular}[/mm]
Dabei sind die Zahlen in der rechten Spalte die Wahrscheinlichkeiten für z.B. "im 1. Zug grün (egal was im 2. Zug passiert)".
Das vollständige Ausfüllen überlasse ich mal dir...
Lieben Gruß,
Fulla
|
|
|
|