www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStochastikBedingte Wahrscheinlichkeiten
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Stochastik" - Bedingte Wahrscheinlichkeiten
Bedingte Wahrscheinlichkeiten < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bedingte Wahrscheinlichkeiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:23 Sa 01.12.2007
Autor: Englein89

Guten Tag,

wir nehmen gerade den Stoff zu bedingten Wahrscheinlichkeiten durch, ich habe da aber leider nicht wirklich den Durchblick.

Meine erste große Frage, durch die sich der Rest evtl erklärt:

Wenn ich P(A [mm] \cap [/mm] B) errechnen soll, mach ich das durch Logik im Kopf, oder gibt es da eine Rechenweise?

Ich hab dazu nur die Formel hier gefunden:

P(A)* PA(B)= P(A [mm] \cap [/mm] B) [mm] \gdw [/mm] PA(B)= P(A [mm] \cap [/mm] B) / P(A)

Kann mir da jemand weiterhelfen?

Ansonsten gibt es ja nur noch die Berechnung der Unabhängigkeit, die ist danach ja wieder einfach. Ansonsten gibt es doch kaum anderen Schritte der Berechnung bei diesem Thema, oder?

Vielen, vielen Dank! Ich finde es übrigens super, dass manche hier so hilfreich mit Rat und Tat zur Seite stehen!

        
Bezug
Bedingte Wahrscheinlichkeiten: Antwort
Status: (Antwort) fertig Status 
Datum: 14:22 Sa 01.12.2007
Autor: luis52

Moin Englein89

>  
> Wenn ich P(A [mm]\cap[/mm] B) errechnen soll, mach ich das durch
> Logik im Kopf, oder gibt es da eine Rechenweise?

Logik im Kopf kann nie schaden... ;-)

Es gibt aber Situationen, wo die Berechnung erleichtert wird:

1) $P(B) >0$ bzw. $P(A)>0$: Dann ist [mm] $P(A\cap B)=P(A\mid [/mm] B)P(B)$ bzw.
[mm] $P(A\cap B)=P(B\mid [/mm] A)P(A)$. Das ist dann guenstig, wenn [mm] $P(A\cap [/mm] B)$
vergleichsweise schwer direkt zu berechnen ist, aber beispielsweise
[mm] $P(A\mid [/mm] B)$ und $P(B)$ leicht.

2) A und B sind unabhaengig. Dann brauchst du nur $P(A)$ und $P(B)$
zu kennen.

lg Luis


Bezug
                
Bezug
Bedingte Wahrscheinlichkeiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:51 Sa 01.12.2007
Autor: Englein89

Hallo,

danke für die Antwort. Leider verstehe ich die Schreibweise mit | nicht. Was wird da berechnet?

Bezug
                        
Bezug
Bedingte Wahrscheinlichkeiten: Antwort
Status: (Antwort) fertig Status 
Datum: 16:05 Sa 01.12.2007
Autor: koepper

Hallo Englein,

das Zeichen "|" bedeutet "unter der Bedingung", also $P(A | B) = [mm] P_B(A)$ [/mm] in deiner Schreibweise.

LG
Will

Bezug
                                
Bezug
Bedingte Wahrscheinlichkeiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:42 So 02.12.2007
Autor: Englein89

Hallo,

demnach entspricht das ja genau der Formel, die ich schon zu Beginn angesprochen hatte. Aber um [mm] P_B(A) [/mm] zu berechnen, rechne ich doch auch wieder mit dem Bruch, der dann im Zähler wieder P(A [mm] \cap [/mm] B) lautet.

Bezug
                                        
Bezug
Bedingte Wahrscheinlichkeiten: Antwort
Status: (Antwort) fertig Status 
Datum: 14:09 So 02.12.2007
Autor: koepper

Hallo,
>  
> demnach entspricht das ja genau der Formel, die ich schon
> zu Beginn angesprochen hatte. Aber um [mm]P_B(A)[/mm] zu berechnen,
> rechne ich doch auch wieder mit dem Bruch, der dann im
> Zähler wieder P(A [mm]\cap[/mm] B) lautet.

da hast du Recht.

Um $P(A [mm] \cap [/mm] B)$ tatsächlich in einer Situation auszurechnen, gibt es verschiedene Möglichkeiten. Das hängt aber eben sehr von dem zugrundeliegenden Zufallsexperiment ab. Eine allgemeine Antwort kann man darauf kaum geben.

Beispiel: Ein Würfel wird geworfen. Die Ergebnismenge enthält die Elementarereignisse {1,2,3,4,5,6}.
Jede dieser Zahlen ist gleich wahrscheinlich.
A = Eine gerade Zahl wird geworfen
B = Eine Primzahl wird geworfen

Dann ist $A [mm] \cap [/mm] B = [mm] \{2\}$ [/mm] und $P(A [mm] \cap [/mm] B) = [mm] \frac{1}{6}.$ [/mm]

Gruß
Will

Bezug
                                                
Bezug
Bedingte Wahrscheinlichkeiten: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:18 So 02.12.2007
Autor: Englein89

Hallo,

danke für die Antwort. Das ist schon das, was ich vermutet hatte, dass man das also eher durch Logik erschließen muss. Sicherliuch ist es aber hilfreich sich erstmal die Ergebnismenge aufzuschreiben und dadurch dann eben die möglichen Treffer durch die alle Möglichkeiten zu teilen, wie in dem Fall 1 durch 6.

Nur noch eine Frage: Gibt es bedingte Wahrscheinlichkeitsaufgaben auch für Bernoulliketten? Wir haben zwar keine Aufgaben solcher Art gemacht, aber ich wär halt trotzdem gern darauf vorbereitet, falls so etwas geht.

Bezug
                                                        
Bezug
Bedingte Wahrscheinlichkeiten: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:34 Di 04.12.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                                        
Bezug
Bedingte Wahrscheinlichkeiten: Noch'n Beispiel
Status: (Antwort) fertig Status 
Datum: 14:15 So 02.12.2007
Autor: luis52


>  Aber um [mm]P_B(A)[/mm] zu berechnen,
> rechne ich doch auch wieder mit dem Bruch, der dann im
> Zähler wieder P(A [mm]\cap[/mm] B) lautet.

Da hast du schon Recht, nur wird mit [mm] $P_B(A)$ [/mm] eine weitere Moeglichkeit
der  Berechnung von Wsken eroeffnet. Angenommen, du willst wissen, wie
gross die Wsk ist, dass jemand Raucher und maennlich ist. Dann helfen die
dir die folgenden Infos:

1) 40 Prozent aller Maenner sind Raucher, in Formeln: [mm] $P_M(R)=0.4$ [/mm]
2) 50 Prozent aller Menschen sind maennlich, in Formeln: $P(M)=0.5$

Die gesuchte Wsk ist dann [mm] $P(R\cap M)=P_M(R)P(M)=0.4\times0.5=0.2$. [/mm]

lg Luis            


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]