www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale FunktionenBedingung für hebb. def.lücke
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Rationale Funktionen" - Bedingung für hebb. def.lücke
Bedingung für hebb. def.lücke < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bedingung für hebb. def.lücke: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:58 Sa 17.04.2010
Autor: MontBlanc

Hallo,

für eine hebbare Definitionslücke gibt es ja zwei Kriterien, zum einen wäre das eine Nullstelle des Nenner, deren links- und rechtsseitiger Grenzwert endlich und gleich ist. Oder aber eine doppelte Nullstelle, also Zähler und Nenner für denselben x-Wert gleich null.

Ist das zweite Kriterium vollkommen ausreichend ? Gibt es Ausnahmen, muss ich mehr überprüfen ? Manchmal, wenn die Funktionen etwas unschöner sind, wäre die Geschichte mit der doppelten Nullstelle einfacher als links und rechtsseitige Grenzwerte bestimmen zu müssen.

Lg

        
Bezug
Bedingung für hebb. def.lücke: Gegenbeispiel
Status: (Antwort) fertig Status 
Datum: 11:09 Sa 17.04.2010
Autor: Loddar

Hallo MontBlanc!


Das erste Kriterium habe ich nicht ganz verstanden ... [kopfkratz3]


Aber hier mal ein Beispiel, dass das zweite Kriterium nicht unbedingt auf "hebbare Definitionslücke" schließen lässt:

$$f(x) \ = \ [mm] \bruch{x^2-3x+2}{x^2-2x+1}$$ [/mm]
Zähler und Nenner haben die Nullstelle [mm] $x_0 [/mm] \ = \ 1$ .

Es gilt aber auch:
$$f(x) \ = \ [mm] \bruch{x^2-3x+2}{x^2-2x+1} [/mm] \ = \ [mm] \bruch{(x-1)*(x-2)}{(x-1)^2} [/mm] \ = \ [mm] \bruch{x-2}{x-1}$$ [/mm]
Und wie man sieht, ist die Definitionslücke immer noch nicht hebbar.


Gruß
Loddar


Bezug
                
Bezug
Bedingung für hebb. def.lücke: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:25 Sa 17.04.2010
Autor: MontBlanc

Hallo,

Danke für deine Antwort :)
was ich meinte mit dem ersten kriterium:

Es muss an der stelle [mm] x_0 [/mm] eine Definitionslücke vorliegen, und der Grenzwert an an der Stelle [mm] x_0 [/mm] , also [mm] \limes_{x\rightarrow x_{0}}f(x) [/mm] muss existieren, dies ist doch gleichbedeutend mit rechts- und linksseitiger grenzwert an der Stelle [mm] x_0 [/mm] sind gleich, oder ?

lg

Bezug
                        
Bezug
Bedingung für hebb. def.lücke: ja
Status: (Antwort) fertig Status 
Datum: 11:33 Sa 17.04.2010
Autor: Loddar

Hallo!


Ach so ....


> Es muss an der stelle [mm]x_0[/mm] eine Definitionslücke vorliegen,
> und der Grenzwert an an der Stelle [mm]x_0[/mm] , also
> [mm]\limes_{x\rightarrow x_{0}}f(x)[/mm] muss existieren, dies ist
> doch gleichbedeutend mit rechts- und linksseitiger
> grenzwert an der Stelle [mm]x_0[/mm] sind gleich, oder ?

Ja.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]