www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale FunktionenBegriffsklärung!
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Ganzrationale Funktionen" - Begriffsklärung!
Begriffsklärung! < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Begriffsklärung!: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:32 Mi 12.11.2008
Autor: DerDon

Guten Abend!

Ich habe mal eine etwas andere Frage:
Heute im Mathematikunterricht haben wir eine Aufgabe gerechnet mit der Funktion f(x) = [mm] x*(x-2)^2*(x+2)^2 [/mm] . Die Nullstellen sind also bei -2, 0 und 2 . Dazu haben wir uns noch notiert, dass die Integralfunktion bei -2 einen Terassenpunkt, bei 0 einen Tiefpunkt und bei 2 wieder einen Terassenpunkt hat. Außerdem bei den Hoch- und Tiefpunkten der normalen Funktion einen Wendepunkt. Das ist anscheinend immer so (oder?).

Nun meine Frage: Gibt es solche „Umrechnungen" (Hochpunkt beim Graphen der normalen Funktion = Wendepunkt beim Graphen der Integralfunktion) auch für andere  bestimmte Punkte einer Funktion?
Das wäre mir eine echte Hilfe, um einen Graph einer solchen Integralfunktion zu zeichnen. Ich weiß, dass I'(x) gleich f(x) ist, allerdings kann ich mir darunter nicht wirklich etwas vorstellen.


Schonmal danke für eure Hilfe!

        
Bezug
Begriffsklärung!: Antwort
Status: (Antwort) fertig Status 
Datum: 21:09 Mi 12.11.2008
Autor: VNV_Tommy

Hallo DerDon,

ihr habt anscheinend ein bisschen mit der Reihenfolge der Ableitungen rumgespielt. Aber im Grunde ist es ganz logisch, wenn man weiß, wie die Ableitungen miteinander verknüpft sind.
Wie du sicher weißt geben die Nullstellen deiner Ausgangsfunktion die Stellen an, an denen der graph einer Funktion die x-Achse schneidet. Soweit klar, denke ich.
Die Nullstellen der 1. Ableitung geben die Stellen an, an denen die Funktion Extempunkte (Hoch-/Tief) hat an. soweit auch klar, oder?
Und die Nullstellen der 2. Ableitung geben die Stellen an, an denen die Ausgangsfunktion möglicherweise Wendepunkte haben kann an. Das sollte auch klar sein.

Nun habt ihr ein wenig rumgestellt. Zunächst habt ihr von f(x) die Nullstellen ermittelt und diese auch als solche interpretiert. Dann aber wurde gesagt, dass f(x)=I'(x) sei. Die eigentliche Ausgangsfunktion sei also die Ableitung einer Stammfunktion I(x). Demzufolge stellen die Nullstellen von f(x) nicht mehr die eigenlichen Nullstellen dar, sondern, in Bezug auf I(X), sind sie die Nullstellen der 1. Ableitung, also die Stellen, an denen I(x) Extrempunkte hat. Klar?
Ähnlich ist die Argumentation mit den Wendepunkten von I(x). Es wird darauf verwiesen, dass die Stellen an denen f(x) Extrempunkte hat, bei I(x) Wendepunkte vorliegen. Das ist auch ganz logisch, dann die 2. Ableitung von ist ja gleich der ersten Ableitung von f(x), also I''(x)=f'(x) da ja gelten soll I'(x)=f(x). Wenn du also die Extrempunkte von f(x) kennst, dann weisst du auch gleichzeitig wo I(x) Wendepunkte haben kann.

Ich weiss, dass klingt alles ein wenig chaotisch, aber wenn man sich das ganze ein bisschen länger betrachtet, dann sollte es einleuchten. Wenn nicht, einfach hier nachfragen. ;-)

gruß,
Tommy

Bezug
                
Bezug
Begriffsklärung!: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:35 Mi 12.11.2008
Autor: DerDon

Ist so weit klar, vielen Dank!
Also ganz kurz ausgedrückt:

Die Nullstellen von f(x) sind die Extrempunkte von I(x)
Die Extrempunkte von f(x) sind die Wendepunkte von I(x)

richtig?

Bezug
                        
Bezug
Begriffsklärung!: Antwort
Status: (Antwort) fertig Status 
Datum: 21:44 Mi 12.11.2008
Autor: Herby

Hallo DerDon,

[daumenhoch]  richtig verstanden.


Liebe Grüße
Herby

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]