www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSonstigesBegriffsklärung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Sonstiges" - Begriffsklärung
Begriffsklärung < Sonstiges < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Begriffsklärung: Frage
Status: (Frage) beantwortet Status 
Datum: 11:58 Sa 06.08.2005
Autor: juliakuehn

Hallo,

ich bin auf einen Begriff gestoßen mit dem ich nicht wirklich was anfangen kann.Was ist eine Involution?Bei mir heißt es [mm] :I_{k} \circ I_{k}= [/mm] id. Wie soll ich das Interpretieren?

Und bedeutet [mm] \parallel x\parallel [/mm] das gleiche wie  |x| ?

Vielen Dank schon jetzt
Liebe Grüße Julia

        
Bezug
Begriffsklärung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:09 Sa 06.08.2005
Autor: DaMenge

Hallo Julia,


> ich bin auf einen Begriff gestoßen mit dem ich nicht
> wirklich was anfangen kann.Was ist eine Involution?Bei mir
> heißt es [mm]:I_{k} \circ I_{k}=[/mm] id. Wie soll ich das
> Interpretieren?

Also eine Involution ist eine Abbildung, die zu sich selbst invers ist, d.h. wenn man sie zweimal anwendet, kommt  das selbe raus wie vorher.
(Aber für alle Werte des Definitionsbereiches !!)

Beispiel: wir betrachten Funktionen auf [mm] $\IR$ [/mm] : dann sind:
$f(x)=-x$ und $g(x)=x$ beides Ivolutionen, denn $f(f(x))=f(-x)=x $
(g sowieso)

Aber man kann auch kompliziertere Sachen nehmen : (ganze Zahl n)
$ [mm] f(n)=\begin{cases} n, & \mbox{für } n \mbox{ gerade} \\ -n, & \mbox{für } n \mbox{ ungerade} \end{cases}$ [/mm]

Umso mehr man noch zusätzlich von der Abbildung erwartet, umso weniger Involutionen kann es zu gegebenen Def.Bereich geben.
(Verknüpfungstreue Involutionen auf der Gruppe $( [mm] \IZ [/mm] , +)$ kann es nur 2 geben, aber das geht vielleicht zu weit.. )


> Und bedeutet [mm]\parallel x\parallel[/mm] das gleiche wie  |x| ?

Also mit dem Doppelstrich ist meistens eine Norm gemeint, nicht nur ein Betrag - allerdings ist der Betrag, den man zum Beispiel für Vektoren kennt auch eine Norm.

Es gibt jedoch verschiedene Normen und wenn man nicht dazu schreibt, welche man nun meint, ist es entweder eine beliebige oder die kanonische (die man sonst auch verwendet).

Das kommt bei dir also ganz auf den Kontext und Definition an.

Hilft dir das?

viele Grüße
DaMenge

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]