Beispiel Normalisator < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:49 Mo 18.11.2013 | Autor: | Topologe |
Aufgabe | Finden Sie ein Beispiel, in dem [mm] \{g \in G | gHg^{-1} \subseteq H \} [/mm] eine echte Obermenge von [mm] N(H)=\{g \in G | gHg^{-1} = H \} [/mm] ist und beweisen Sie, dass diese Menge in jedem solchen Fall keine Untergruppe von G ist. |
Hallo
Habe leider Probleme hier ein Beispiel zu finden. Hat jemand vllt eine Idee hierzu?
LG,
Topologe
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:50 Di 19.11.2013 | Autor: | felixf |
Moin Topologe,
> Finden Sie ein Beispiel, in dem [mm]\{g \in G | gHg^{-1} \subseteq H \}[/mm]
> eine echte Obermenge von [mm]N(H)=\{g \in G | gHg^{-1} = H \}[/mm]
> ist und beweisen Sie, dass diese Menge in jedem solchen
> Fall keine Untergruppe von G ist.
wenn $H$ endlich ist, geht das schonmal nicht: dann folgt aus $g H [mm] g^{-1} \subseteq [/mm] H$ bereits $g H [mm] g^{-1} [/mm] = H$. Und wenn $G$ kommutativ ist, dann ist eh immer $g H [mm] g^{-1} [/mm] = H$.
Du suchst also eine unendliche nicht-kommutative Gruppe. Was kennst du da fuer Beispiele?
LG Felix
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 09:01 Mi 20.11.2013 | Autor: | hippias |
In Ergaenzung zu Felix' Bemerkung: Das $g$ sollte auch keine endliche Ordnung besitzen.
Ich denke so: Nimm eine unendliche Gruppe $G$ und einen Automorphismus [mm] $\alpha$ [/mm] dazu. Daraus laesst sich mittels des semidirekten Produktes immer eine Gruppe bilden, die $G$ und [mm] $\alpha$ [/mm] enthaelt. Darueberhinaus ist in dem semidirekten Produkt immer [mm] $\alpha^{-1}g\alpha= \alpha(g)$, $g\in [/mm] G$. Also sollte $H$ einfach eine [mm] $\alpha$-invariante [/mm] Untergruppe von $G$ sein.
Damit die Automorphismengruppe nicht zu aermlich ist, waehle nicht $G= [mm] (\IZ,+)$, [/mm] sondern eher $G= [mm] (\IQ,+)$. [/mm] Vielleicht ist [mm] $x^{\alpha}= [/mm] 2x$ ein guter Automorphismus. Jetzt muesste man noch [mm] $H\leq [/mm] G$ geschickt waehlen, damit [mm] $H^{\alpha}< [/mm] H$ ist.
|
|
|
|