www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraBeispiel eines Artin-Ring
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Algebra" - Beispiel eines Artin-Ring
Beispiel eines Artin-Ring < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beispiel eines Artin-Ring: Jemand ne Idee ?
Status: (Frage) überfällig Status 
Datum: 13:41 Do 23.03.2006
Autor: Vilologe

Ich brauche für einen Vortrag ein Beispiel für einen nicht kommutativen Artin'schen Ring, also
1) die Multiplikation darf nicht kommutativ sein
2) eine absteigende Kette von Unteridealen [mm] (a_{1} \supset a_{2} \supset a_{3} \supset [/mm] ... ) muss abbrechen
3) es muss die Minimalbedingung für Unterideale gelten.

Also bei "nicht kommutativ" habe ich sofort an die Matrizen gedacht, beispielsweise GL(2x2, [mm] \IR). [/mm] Aber wie bekomme ich da die Minimalbedingung mit rein oder wie bekomme ich da eine endende absteigende Unteridealkette?

Dann habe ich auch schonmal versucht, irgendwie mit Mengen von Homomorphismen einen Ring zu basteln, oder die Symmetrische Gruppe mit ner Multiplikation zu versehen, oder mit den Potenzmengen einer endlichen Menge einen Ring zu bauen, hat alles irgendwie nicht hingehauen.

Ich wäre für eure Hilfe echt dankbar.
Vilo

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Beispiel eines Artin-Ring: Antwort
Status: (Antwort) fertig Status 
Datum: 14:00 Do 23.03.2006
Autor: felixf

Hallo!

> Ich brauche für einen Vortrag ein Beispiel für einen nicht
> kommutativen Artin'schen Ring, also
> 1) die Multiplikation darf nicht kommutativ sein
>  2) eine absteigende Kette von Unteridealen [mm](a_{1} \supset a_{2} \supset a_{3} \supset[/mm]
> ... ) muss abbrechen
>  3) es muss die Minimalbedingung für Unterideale gelten.

Was ist die Minimalbedingung fuer Unterideale?

> Also bei "nicht kommutativ" habe ich sofort an die Matrizen
> gedacht, beispielsweise GL(2x2, [mm]\IR).[/mm] Aber wie bekomme ich
> da die Minimalbedingung mit rein oder wie bekomme ich da
> eine endende absteigende Unteridealkette?

Jedes Ideal ist ein [mm] $\IR$-Untervektorraum [/mm] vom vierdimensionalen [mm] $\R$-Vektorraum [/mm] $GL(2x2, [mm] \IR)$. [/mm] Die Kettenbedingung bekommst du damit geschenkt. :-)

LG Felix


Bezug
                
Bezug
Beispiel eines Artin-Ring: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:39 Do 23.03.2006
Autor: Vilologe

Also Minimalbedingung bedeutet, dass jede Menge von Unteridealen ein kleinstes Element - also ein Minimum - besitzt.

Bezug
                        
Bezug
Beispiel eines Artin-Ring: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:40 Do 23.03.2006
Autor: felixf


> Also Minimalbedingung bedeutet, dass jede Menge von
> Unteridealen ein kleinstes Element - also ein Minimum -
> besitzt.

Die ist bei $GL(n [mm] \times [/mm] n, K)$ (mit $K$ einem Koerper) auch erfuellt, das folgt ebenfalls aus dem Dimensionsargument.

LG Felix


Bezug
                
Bezug
Beispiel eines Artin-Ring: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:18 Fr 24.03.2006
Autor: Vilologe

Aufgabe
Jedes Ideal ist ein $ [mm] \IR [/mm] $-Untervektorraum vom vierdimensionalen $ [mm] \R [/mm] $-Vektorraum $ GL(2x2, [mm] \IR) [/mm] $.

Also das versteh ich jetzt nicht ganz. Eine 2x2 Matrix ist doch stellvertretend für ne Abbildung von einem zweidimensionalen VR in einen zweidimensionalen VR. Was ist denn da jetzt vierdimensional?

Bezug
                        
Bezug
Beispiel eines Artin-Ring: Antwort
Status: (Antwort) fertig Status 
Datum: 10:48 Fr 24.03.2006
Autor: felixf

Sali!

> Jedes Ideal ist ein [mm]\IR [/mm]-Untervektorraum vom
> vierdimensionalen [mm]\IR [/mm]-Vektorraum [mm]GL(2x2, \IR) [/mm].

Was mir gerade auffaellt: Du meinst mit $GL(2 [mm] \times [/mm] 2, [mm] \IR)$ [/mm] doch die Menge aller $2 [mm] \times [/mm] 2$-Matrizen und nicht nur die invertierbaren, oder? Ansonsten ist das kein Ring! (Und wenn du nur mit den invertierbaren Matrizen arbeitest klappt das mit den Dimensionsargumenten auch nicht, da du keinen Vektorraum hast: es fehlt die additive Struktur, die aber auch fuer einen Ring fehlt...)

>  Also das
> versteh ich jetzt nicht ganz. Eine 2x2 Matrix ist doch
> stellvertretend für ne Abbildung von einem
> zweidimensionalen VR in einen zweidimensionalen VR. Was ist
> denn da jetzt vierdimensional?

Du kannst die Menge der $2 [mm] \times [/mm] 2$-Matrizen auch als Vektorraum auffassen! Skalarmultiplikation und Addition sind 'wie gehabt', also Komponentenweise. Und das der Vektorraum vierdimensional ist, siehst du daran das die folgenden Matrizen eine Basis bilden: [mm] $\pmat{1 & 0 \\ 0 & 0}$, $\pmat{0 & 1 \\ 0 & 0}$, $\pmat{0 & 0 \\ 1 & 0}$ [/mm] und [mm] $\pmat{0 & 0 \\ 0 & 1}$. [/mm]

(Die linearen Abbildungen von einem $K$-Vektorraum $V$ in einen anderen $K$-Vektorraum $W$ bilden uebrigens ebenso einen $K$-Vektorraum, welcher mit dem $K$-Vektorraum der [mm] $(\dim [/mm] V) [mm] \times (\dim [/mm] W)$-Matrizen identifiziert werden kann.)

LG Felix


Bezug
        
Bezug
Beispiel eines Artin-Ring: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Mi 29.03.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]