www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-FinanzmathematikBenötigtes Kapital für eine Re
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Finanzmathematik" - Benötigtes Kapital für eine Re
Benötigtes Kapital für eine Re < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Benötigtes Kapital für eine Re: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:54 So 16.09.2007
Autor: unkompliziert

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo Gemeinde,
Kann mir jemand helfen folgende Aufgaben zu lösen:

1. Welches Anfangskapital wird benötigt, um eine private Rente von 1000 EUR/Monat und 5% Erhöhung/Jahr der Rente, 30 Jahre lang zu erhalten.
Das Geld wird mit 4% Zins angelegt.

2. Welchen monatlichen Sparbetrag müsste jemand aufbringen, um nach 20 Jahren die Summe von 1.500 000 EUR zu erhalten? Der Sparbetrag wird dabei jährlich um 5% erhöht.

Vorab vielen Dank.

        
Bezug
Benötigtes Kapital für eine Re: Antwort
Status: (Antwort) fertig Status 
Datum: 00:12 Mo 17.09.2007
Autor: Martinius

Hallo,

zur 2)

[mm]K_{0}*1,05^{20}=1,5*10^{6}Euro[/mm]

[mm] K_{0} [/mm] = 565334 Euro

zur 1)

Hier bin ich nicht ganz sicher, ob ich die Aufgabe richtig verstanden habe.

[mm]K_{0}*1,04^{30}=1000*30*1,05^{30}Euro[/mm]

[mm] K_{0} [/mm] = 39976 Euro


LG, Martinius


Bezug
        
Bezug
Benötigtes Kapital für eine Re: Antwort
Status: (Antwort) fertig Status 
Datum: 07:52 Mo 17.09.2007
Autor: Josef

Hallo,

>  
> 1. Welches Anfangskapital wird benötigt, um eine private
> Rente von 1000 EUR/Monat und 5% Erhöhung/Jahr der Rente, 30
> Jahre lang zu erhalten.
>  Das Geld wird mit 4% Zins angelegt.
>  


Mein Ansatz:

[mm] 1.000*(12+\bruch{0,04}{2}*11)*\bruch{1,04^{30}-1,05^{30}}{1,04-1,05}*\bruch{1}{1,04^{30}} [/mm] = [mm] K_0 [/mm]





> 2. Welchen monatlichen Sparbetrag müsste jemand aufbringen,
> um nach 20 Jahren die Summe von 1.500 000 EUR zu erhalten?
> Der Sparbetrag wird dabei jährlich um 5% erhöht.



[mm] r*(12+\bruch{0,04}{2}*11)*\bruch{1,04^{20}-1,05^{20}}{1,04-1,05} [/mm] = 1.500.000


Viele Grüße
Josef


Bezug
                
Bezug
Benötigtes Kapital für eine Re: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:42 Mo 17.09.2007
Autor: unkompliziert

Vielen Dank vorab für die schnelle Hilfe. Leider komm ich nicht zum gewünschten Ergebnis. Die Schulzeit liegt schon sehr lange zurück, daher bitte ich meine leihenhaften Fragen zu entschuldigen. Wenn ich das ganze mit der EDV rechne, so erhalte ich für die Aufgabe 2 als Ergebnis eine monatliche Sparrate 2665 EUR. Bei einer verzinsung von 4% und einer jährlichen Erhöhung des Sparbetrages um 5%.

Beispiel Aufgabe 2:

> Mein Ansatz:

[mm]r*(12*\bruch{0,04}{2}*11)*\bruch{1,04^{20}-1,05^{20}}{1,04-1,05}[/mm]= 1.500.000

Das habe ich wie folgt gerechnet:

[mm] 1,04^{20} [/mm] sind das 2,1911 ?
[mm] 1,05^{20} [/mm] sind das 2,653 ?

Demnach müsste die Formel wie folgt aussehen oder?
(12 * 0,02 * 11)  * ((2,1911 - 2,653) / (1,04 - 1,05)) = 121,91
bzw. 2,64 * (0,4618 / 0,01)  = 121,91

Liebe Grüße aus Bayern
unkompliziert



Bezug
                        
Bezug
Benötigtes Kapital für eine Re: Antwort
Status: (Antwort) fertig Status 
Datum: 19:21 Mo 17.09.2007
Autor: Josef

Hallo unkompliziert,

>  Leider komm ich
> nicht zum gewünschten Ergebnis. Die Schulzeit liegt schon
> sehr lange zurück, daher bitte ich meine leihenhaften
> Fragen zu entschuldigen. Wenn ich das ganze mit der EDV
> rechne, so erhalte ich für die Aufgabe 2 als Ergebnis eine
> monatliche Sparrate 2665 EUR. Bei einer verzinsung von 4%
> und einer jährlichen Erhöhung des Sparbetrages um 5%.
>
> Beispiel Aufgabe 2:
>  
> > Mein Ansatz:
>  
> [mm]r*(12 + \bruch{0,04}{2}*11)*\bruch{1,04^{20}-1,05^{20}}{1,04-1,05}[/mm]=
> 1.500.000
>  
> Das habe ich wie folgt gerechnet:
>  
> [mm]1,04^{20}[/mm] sind das 2,1911 ?

[ok]

rechne lieber mit: 2,191123 wegen Rundungsfehler.

>  [mm]1,05^{20}[/mm] sind das 2,653 ?
>  

[ok]


rechne lieber mit 2,653297 wegen Rundungsfehler.


> Demnach müsste die Formel wie folgt aussehen oder?
>  (12 * 0,02 * 11)  * ((2,1911 - 2,653) / (1,04 - 1,05)) =
> 121,91
>  bzw. 2,64 * (0,4618 / 0,01)  = 121,91
>  

[notok]

Der Ansatz muss richtig lauten:

r*(12 + [mm] \bruch{0,04}{2}*11)*\bruch{1,04^{20}.1,05^{20}}{1,04-1,05} [/mm] = 1.500.000

r = 2.655,92





Entschuldige bitte den Tippfehler.

Viele Grüße
Josef

Bezug
                                
Bezug
Benötigtes Kapital für eine Re: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:21 Di 18.09.2007
Autor: unkompliziert

Ich bin begeistert, danke für die Hilfe.

Bezug
                                
Bezug
Benötigtes Kapital für eine Re: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:14 Mo 15.10.2007
Autor: unkompliziert

Hallo Josef,

leider funktioniert die Formel nicht, wenn Dynamik (also die jährliche Erhöhung des Beitrages) und der Zinssatz gleich sind. Gibt es dafür eine Lösung?

Bezug
                                        
Bezug
Benötigtes Kapital für eine Re: Antwort
Status: (Antwort) fertig Status 
Datum: 06:57 Mo 15.10.2007
Autor: Josef

Hallo unkompliziert,


>  
> leider funktioniert die Formel nicht, wenn Dynamik (also
> die jährliche Erhöhung des Beitrages) und der Zinssatz
> gleich sind. Gibt es dafür eine Lösung?


bisher sind wir davon ausgegangen, dass q [mm] \ne [/mm] g ist.

Also: [mm] R_n [/mm] = [mm] r*\bruch{q^n - g^n}{q-g} [/mm]


Falls q = g

dann gilt:


[mm] R_n [/mm] = [mm] rnq^{n-1} [/mm]



Viele Grüße
Josef

Bezug
                                                
Bezug
Benötigtes Kapital für eine Re: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 03:37 Mi 17.10.2007
Autor: unkompliziert

Hallo Josef,

ich kann leider nicht ganz nachvollziehen was Du mit

$ [mm] R_n [/mm] $ = $ [mm] rnq^{n-1} [/mm] $   meinst.

Also um das mal mit meinen obigen Beispielzahlen aus der Aufgabe 2 zu füllen:

$ [mm] (12+\bruch{0,04}{2}\cdot{}11)\cdot{}\bruch{1,04^{20}-1,05^{20}}{1,04-1,05} [/mm]  $ = 567,77

1.500.000 / 567,77 = 2.655,92

Wie müsste die obige Formel nun aussehen, wenn q = g (also Zins und Dynamik gleich ist).
Es wäre schön, wenn Du das mit meinen obigen Beispielzahlen ergänzen würdest.

Vielen Dank vor ab und freundliche Grüße aus Bayern.
unkompliziert




Bezug
                                                        
Bezug
Benötigtes Kapital für eine Re: Antwort
Status: (Antwort) fertig Status 
Datum: 07:20 Mi 17.10.2007
Autor: Josef

Hallo unkompliziert,


>  
> ich kann leider nicht ganz nachvollziehen was Du mit
>
> [mm]R_n[/mm] = [mm]rnq^{n-1}[/mm]   meinst.
>  
> Also um das mal mit meinen obigen Beispielzahlen aus der
> Aufgabe 2 zu füllen:
>  
> [mm](12+\bruch{0,04}{2}\cdot{}11)\cdot{}\bruch{1,04^{20}-1,05^{20}}{1,04-1,05} [/mm]
> = 567,77
>  
> 1.500.000 / 567,77 = 2.655,92
>
> Wie müsste die obige Formel nun aussehen, wenn q = g (also
> Zins und Dynamik gleich ist).


q = 1,04

g = 1,04

d.h. Rente mit gleicher Dynamisierungsrate und gleichem Zinsfuß


[mm] (12+\bruch{0,04}{2}*11)*20*1,04^{19} [/mm] = 514,91


Viele Grüße
Josef

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]