www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenKomplexität & BerechenbarkeitBerechenbarkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Komplexität & Berechenbarkeit" - Berechenbarkeit
Berechenbarkeit < Komplex. & Berechnb. < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Komplexität & Berechenbarkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Berechenbarkeit: Tipp
Status: (Frage) überfällig Status 
Datum: 18:21 So 29.11.2009
Autor: stefan00

Aufgabe
Die Funktion [mm] $f:\subseteq\IN^4\to\IN$ [/mm] sei definiert durch [mm] $f(i,j,x,y):=\phi_i^{\phi_j(x)}(y)$ [/mm] für alle $i,j,x,y [mm] \in \IN$. [/mm] Zeigen Sie, dass $f$ berechenbar ist.

Hallo,

hat jemand einen Tipp, wie ich hier vorgehen muss? utm/smn-Theorem benutzen, Satz von Rogers? Ich hab irgendwie leider noch keine Idee.

Vielen Dank für die Hilfe.

Gruß, Stefan.

        
Bezug
Berechenbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:12 Mi 02.12.2009
Autor: felixf

Hallo Stefan.

> Die Funktion [mm]f:\subseteq\IN^4\to\IN[/mm] sei definiert durch
> [mm]f(i,j,x,y):=\phi_i^{\phi_j(x)}(y)[/mm] für alle [mm]i,j,x,y \in \IN[/mm].
> Zeigen Sie, dass [mm]f[/mm] berechenbar ist.

Wenn du uns mitteilen wuerdest, was die ganzen [mm] $\phi$s [/mm] bedeuten sollen, und was genau ihr unter berechenbar (Turing-berechenbar?) versteht, koennten wir dir evtl. weiterhelfen.

> utm/smn-Theorem benutzen,

Was ist das?

> Satz von Rogers?

Meinst du den Aequivalenzsatz / das Isomorphietheorem (oder wie auch immer das noch so heisst)?

LG Felix


Bezug
                
Bezug
Berechenbarkeit: Erklärung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:03 Do 03.12.2009
Autor: stefan00

Hallo Felix,

> Wenn du uns mitteilen wuerdest, was die ganzen [mm]\phi[/mm]s
> bedeuten sollen, und was genau ihr unter berechenbar
> (Turing-berechenbar?) versteht, koennten wir dir evtl.
> weiterhelfen.

ok, ich gebe mal die Definitionen an, die evtl. wichtig sein könnten:

Definition: Standardnummerierung [mm] $\phi$: [/mm]
1. Es ist eine Ordnungsfunktion [mm] $a:{1,...,8}\to \Omega$ [/mm] definiert durch
[mm] $(a_1|a_2|...|a_8):=(1|B|(|)|:|,|R|L)$. [/mm] Es sei [mm] $\nu_\Omega$ [/mm] die aus a abgeleitete Standardnummerierung von [mm] $\Omega^\*$. [/mm]
2. Es sei [mm] $\nu_P:\IN\toBP$ [/mm] definiert durch
[mm] $\nu_P(i)=\begin{cases} \nu_\Omega(i), & \mbox{falls } \nu_\Omega(i) \in \mbox{ BP} \\ "(:B,,)", & \mbox{sonst. } \end{cases}$ [/mm]
3. Es sei [mm] $\xi:BM\toP^{(1)}$ [/mm] definiert durch [mm] $\xi(M):=\iota^{-1}f_M\iota$ [/mm] (wobei [mm] $\iota:\IN\to\{1\}^\*,\iota(i):=1^i$). [/mm]
4. Dann sei [mm] $\phi: \IN \to P^{(1)}$ [/mm] definiert durch [mm] $\phi_i:=\phi(i):=\xi\nu_M\nu_P(i)$ [/mm] für alle [mm] $i\in\IN$. [/mm] Die Nummerierung [mm] $\phi$ [/mm] heißt die Standardnummerierung von [mm] $P^{(1)}$. [/mm]

>  
> > utm/smn-Theorem benutzen,
>  
> Was ist das?

Satz: utm-Theorem
Die Funktion [mm] $u_\phi:\subseteq\IN^2\to\IN$ [/mm] sei definiert durch [mm] $u_\phi(i,x):=\phi_i(x)$ [/mm] für alle $i,x [mm] \in \IN$. [/mm]
Dann ist [mm] $u_\phi$ [/mm] berechenbar. (Man nennt [mm] $u_\phi$ [/mm] die universelle Funktion von [mm] $\phi$.) [/mm]

Satz: smn–Theorem, Übersetzungslemma
Es sei $f [mm] \in P^{(2)}$ [/mm] eine beliebige zweistellige berechenbare Funktion. Dann gibt es eine total-rekursive Funktion $r [mm] \in R^{(1)}$ [/mm] mit [mm] $f(i,j)=\phi_{r(i)}(j)$ [/mm] für alle [mm] $i,j\in\IN$. [/mm]

Ich hoffe, das hellt die Sache etwas auf.

Vielen Dank für die Hilfe, Gruß, Stefan.

Bezug
        
Bezug
Berechenbarkeit: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Di 08.12.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Komplexität & Berechenbarkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]