www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenBerechnung der Eigenvektoren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Matrizen" - Berechnung der Eigenvektoren
Berechnung der Eigenvektoren < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Berechnung der Eigenvektoren: Hilfe für komplexe Eigenwerte
Status: (Frage) beantwortet Status 
Datum: 19:00 Mo 13.10.2014
Autor: babflab

Aufgabe
A= [mm] \pmat{ 3 & -2 \\ 4 & -1 } [/mm]
Eigenwert, Eigenvektor und Inverse berechnen

Hallo Matheraum,

da ich bei einer Aufgabe gerade am verzweifeln bin und auch durch googlen nicht weiter gekommen bin, dachte ich mir, ich registriere mich hier und hoffe ihr könnt mir helfen :(((

was ich bereits zu der o.g. Aufgabe berechnet habe ist folgendes:
det A= 5
charakteristisches Polynom: [mm] \lambda [/mm] ^2 [mm] +-2\lambda [/mm] + 5
Eigenwerte: [mm] \lambda [/mm] 1 = 1+2i
[mm] \lambda [/mm] 2 = 1-2i

So, und ab hier beginnt mein Disaster was Eigenvektoren betrifft mit komplexen Eigenwerten....
Eigenvektor: [mm] (A-\lambda [/mm] I) * [mm] \vec{v} [/mm] = 0
Eingesetzt und in Diffglg umgeschrieben, Eigenvektor zum Eigenwert [mm] \lambda [/mm] 1
I. 3-(1+2i)x - 2y = 0
II. 4x - (-1(1+2i))y= 0

habe ich falsch angesetzt? wenn doch richtig, wie löse ich dieses Glg auf? Irgendwie bin ich verwirrt durch "i"

Vielen dank!!!!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Berechnung der Eigenvektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 19:58 Mo 13.10.2014
Autor: Thomas_Aut

Hallo,
> A= [mm]\pmat{ 3 & -2 \\ 4 & -1 }[/mm]
>  Eigenwert, Eigenvektor und
> Inverse berechnen
>  Hallo Matheraum,
>  
> da ich bei einer Aufgabe gerade am verzweifeln bin und auch
> durch googlen nicht weiter gekommen bin, dachte ich mir,
> ich registriere mich hier und hoffe ihr könnt mir helfen
> :(((
>
> was ich bereits zu der o.g. Aufgabe berechnet habe ist
> folgendes:
>  det A= 5
>  charakteristisches Polynom: [mm]\lambda[/mm] ^2 [mm]+-2\lambda[/mm] +

richitg $p(A) = [mm] \lambda^2 -2\lambda [/mm] +5$

>  Eigenwerte: [mm]\lambda[/mm] 1 = 1+2i
>  [mm]\lambda[/mm] 2 = 1-2i

auch deine Eigenwerte sind richtig.

>  
> So, und ab hier beginnt mein Disaster was Eigenvektoren
> betrifft mit komplexen Eigenwerten....
>  Eigenvektor: [mm](A-\lambda[/mm] I) * [mm]\vec{v}[/mm] = 0
>  Eingesetzt und in Diffglg umgeschrieben, Eigenvektor zum
> Eigenwert [mm]\lambda[/mm] 1
>  I. 3-(1+2i)x - 2y = 0
>  II. 4x - (-1(1+2i))y= 0

1) Was meinst du mit Diffglg ? (Differentialgleichung? , wohl kaum oder ?)
2) Löse nun:
[mm] \pmat{ 3-\lambda_{1} & -2 \\ 4 & -1-\lambda_{1} }\pmat{ x_{1} \\ x_{2} } [/mm] = [mm] \pmat{ 0 \\ 0 } [/mm]
und
[mm] \pmat{ 3-\lambda_{2} & -2 \\ 4 & -1-\lambda_{2} }\pmat{ x_{1} \\ x_{2} } [/mm] = [mm] \pmat{ 0 \\ 0 } [/mm]

>  
> habe ich falsch angesetzt? wenn doch richtig, wie löse ich
> dieses Glg auf? Irgendwie bin ich verwirrt durch "i"
>  
> Vielen dank!!!!
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Gruß

Thomas

Bezug
                
Bezug
Berechnung der Eigenvektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:25 Mo 13.10.2014
Autor: babflab

Tut mir leid Aber das habe ich ja bereits gemacht und komme nicht weiter
>  I. 3-(1+2i)x - 2y = 0
>  II. 4x - (-1(1+2i))y= 0

Und für /lambda 2 kann man ja auch einsetzen aber hier ist der Ansatz für mein erstes /lambda 1

Wie geht es dann weiter ?

Bezug
                        
Bezug
Berechnung der Eigenvektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 20:36 Mo 13.10.2014
Autor: Thomas_Aut


> Tut mir leid Aber das habe ich ja bereits gemacht und komme
> nicht weiter
> >  I. 3-(1+2i)x - 2y = 0

> >  II. 4x - (-1(1+2i))y= 0

> Und für /lambda 2 kann man ja auch einsetzen aber hier ist
> der Ansatz für mein erstes /lambda 1

das GLS ist allerdings nicht ganz richtig.
es muss doch: (2-2i)x in der ersten Zeile und (-2-2i)y in der letzten.


>
> Wie geht es dann weiter ?

Das Gleichungssystem lösen - das ist aber bei zwei Gleichungen und zwei Variablen nicht schwer.

Versuchs mal.

Gruß Thomas

Bezug
                                
Bezug
Berechnung der Eigenvektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:17 Di 14.10.2014
Autor: babflab

ja da hast du recht, sollte eigentlich kein Problem sein eine Gleichung zu lösen, aber irgendwo habe ich einen Denkfehler oder sehe den Wald vor lauter Bäumen nicht.

Ich versuche es jetzt nochmal, aber ich weiss echt nicht wo der Fehler ist, warum ich nicht weiter komme:

- Wenn ich mein [mm] \lambda1 [/mm] einsetze habe ich
I. [mm] (2-2i)x_{1} -2x_{2} [/mm] = 0
II. [mm] 4x_{1} [/mm] + [mm] (-2-2i)x_{2} [/mm] = 0

I. [mm] (2-2i)x_{1} -2x_{2} [/mm] = 0 I+ [mm] 2x_{2} [/mm]
[mm] (2-2i)x_{1} [/mm] = [mm] 2x_{2} [/mm] I :(2-2i)
[mm] x_{1} [/mm] = [mm] \bruch{2x_{2}}{2-2i} [/mm]

In meiner Lösung steht aber:
[mm] x_{1} [/mm] = [mm] (\bruch{1}{2} [/mm] + [mm] \bruch{1}{2i})x2 [/mm]

Wenn ich nun
II. nach [mm] x_{2} [/mm] umforme:
[mm] x_{2} [/mm] =  [mm] (\bruch{4x_{1}}{-2-2i}) [/mm]

Hab auch andere Ansätze ausprobiert, die 2 Gleichungen so multipliziert und subtrahiert das eine Unbekannte wegfällt aber kam auf außerirdische Gleichungen -.-

ps.:mathe ist meine seeeehr große schwäche :((





Bezug
                                        
Bezug
Berechnung der Eigenvektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 12:26 Di 14.10.2014
Autor: fred97


> ja da hast du recht, sollte eigentlich kein Problem sein
> eine Gleichung zu lösen, aber irgendwo habe ich einen
> Denkfehler oder sehe den Wald vor lauter Bäumen nicht.
>  
> Ich versuche es jetzt nochmal, aber ich weiss echt nicht wo
> der Fehler ist, warum ich nicht weiter komme:
>  
> - Wenn ich mein [mm]\lambda1[/mm] einsetze habe ich
>  I. [mm](2-2i)x_{1} -2x_{2}[/mm] = 0
>  II. [mm]4x_{1}[/mm] + [mm](-2-2i)x_{2}[/mm] = 0
>  
> I. [mm](2-2i)x_{1} -2x_{2}[/mm] = 0 I+ [mm]2x_{2}[/mm]
>  [mm](2-2i)x_{1}[/mm] = [mm]2x_{2}[/mm] I :(2-2i)
>  [mm]x_{1}[/mm] = [mm]\bruch{2x_{2}}{2-2i}[/mm]

Das ist richtig.


>  
> In meiner Lösung steht aber:
>  [mm]x_{1}[/mm] = [mm](\bruch{1}{2}[/mm] + [mm]\bruch{1}{2i})x2[/mm]

Das ist falsch.


>  
> Wenn ich nun
> II. nach [mm]x_{2}[/mm] umforme:
>  [mm]x_{2}[/mm] =  [mm](\bruch{4x_{1}}{-2-2i})[/mm]
>  
> Hab auch andere Ansätze ausprobiert, die 2 Gleichungen so
> multipliziert und subtrahiert das eine Unbekannte wegfällt
> aber kam auf außerirdische Gleichungen -.-

Eigenvektoren sind nicht eindeutig bestimmt !

In obigem Fall ist [mm] x_2=(1-i)x_1. [/mm] Dammit hat jeder Eigenvektor die Gestalt

   $ [mm] s*\vektor{1 \\ 1-i}$ [/mm] mit $s [mm] \in \IC \setminus \{0\}$ [/mm]

FRED

>  
> ps.:mathe ist meine seeeehr große schwäche :((
>  
>
>
>  


Bezug
                                                
Bezug
Berechnung der Eigenvektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:33 Di 14.10.2014
Autor: babflab

Okay! Ich hatte ja für lambda 1 eingesetzt, ist das dann aber so
Das auch für lambda 2 die selbe aussage gilt, das die Eigenvektoren zum Eigenwert nicht eindeutig bestimmt sind?

Und noch eine Frage, wie bist du auf x2= (1-i)x2 gekommen?

Und wann darf ich sagen, das die Eigenvektoren nicht eindeutig zu bestimmen sind?

Bezug
                                                        
Bezug
Berechnung der Eigenvektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 13:57 Di 14.10.2014
Autor: Steffi21

Hallo du hast

(1) [mm] (2-2i)x_1-2x_2=0 [/mm]
(2) [mm] 4x_1+(-2-2i)x_2=0 [/mm]

aus (1) folgt

[mm] (2-2i)x_1=2x_2 [/mm]

[mm] (1-i)x_1=x_2 [/mm]

für [mm] \lambda_1=1+2i [/mm] ist der Eigenvektor  [mm] s\cdot{}\vektor{1 \\ 1-i} [/mm]  mit  s [mm] \in \IC \setminus \{0\} [/mm]

für [mm] \lambda_2=1-2i [/mm] ist der Eigenvektor  [mm] s\cdot{}\vektor{1 \\ 1+i} [/mm]  mit  s [mm] \in \IC \setminus \{0\} [/mm]

auch der Eigenvektor für den Eigenwert [mm] \lambda_2 [/mm] ist nicht eindeutig bestimmt

so ist z.B. [mm] \vektor{1 \\ 1-i} [/mm] EIN Eigenvektor für [mm] \lambda_1 [/mm] für s=1

Steffi

Bezug
                                                                
Bezug
Berechnung der Eigenvektoren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:54 Di 14.10.2014
Autor: babflab

Danke vielmals !

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]