www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPolitik/WirtschaftBerechnung der Kovarianz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Politik/Wirtschaft" - Berechnung der Kovarianz
Berechnung der Kovarianz < Politik/Wirtschaft < Geisteswiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Politik/Wirtschaft"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Berechnung der Kovarianz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:55 Do 10.02.2011
Autor: Jimpanse

Aufgabe
Geben Sie folgendes Ergebnis an:

1) Kovarianz zwischen A und B
2) Korrelation zwischen A und B

Guten Tag miteinander,

ich habe folgende Werte gegeben:

Tag         A                B
1       0,03544      0,06543
2       0,01167      0,03426
3       0,05089      0,02005

Anhand der Werte bekomme ich für die Erwartungsredite A = 0,0327; Erwartungsrendite B = 0,0399, Varianz A = 0,0003903; Varianz B = 0,0005388 heraus.

Nun möchte ich gern die Kovarianz zwischen A und B berechnen, dazu benutze ich folgende Formel:

Cov = [mm] \bruch{1}{n - 1} [/mm] * ( [mm] \summe_{i=1}^{n} A_{i} B_{i} [/mm] - n * [mm] A_{Rendite} [/mm] * [mm] B_{Rendite} [/mm] )

Leider komme ich nicht auf den geforderten Wert von -0,0000863

Im nächsten Schritt sollte die Korrelation berechnet werden, hier fehlt mir gänzlich die Formel.

Über eine Hilfe würde ich mich sehr freuen!!

Liebe Grüße

        
Bezug
Berechnung der Kovarianz: Antwort
Status: (Antwort) fertig Status 
Datum: 14:50 Fr 11.02.2011
Autor: ullim

Hi,

Die Kovarianz berechnet sich zu

[mm] Cov(A,B)=\bruch{1}{n-1}*\summe_{i=1}^{n}\left(A_i-\overline{A}\right)*\left(B_i-\overline{B}\right) [/mm]

mit n=3 und [mm] \overline{A}=\bruch{1}{n}*\summe_{i=1}^{n}A_i [/mm] und [mm] \overline{B}=\bruch{1}{n}*\summe_{i=1}^{n}B_i [/mm]

damit bekommst Du auch das verlangte Ergebnis.

Der Korrelationskoeffizient berechnet sich zu

[mm] \rho(A,B)=\bruch{Cov(A,B)}{\wurzel{Var(A)}*\wurzel{Var(B)}} [/mm] mit [mm] Var(A)=\bruch{1}{n-1}*\summe_{i=1}^{n}\left(A_i-\overline{A}\right)^2 [/mm] und [mm] Var(B)=\bruch{1}{n-1}*\summe_{i=1}^{n}\left(B_i-\overline{B}\right)^2 [/mm]

Bezug
                
Bezug
Berechnung der Kovarianz: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:35 Fr 11.02.2011
Autor: Jimpanse

Hey,

vielen Dank für die anschauliche Antwort!! Bei der Kovarianz habe ich meinen Fehler jetzt gefunden, habs jetzt raus. Die Korrelation hat jetzt auch geklappt.

Liebe Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Politik/Wirtschaft"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]