www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisBerechnung der Kreisbogenlänge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Schul-Analysis" - Berechnung der Kreisbogenlänge
Berechnung der Kreisbogenlänge < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Berechnung der Kreisbogenlänge: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 18:54 Do 05.01.2006
Autor: DeLuxor

Aufgabe
Sei x  [mm] \in [/mm] [0,2 [mm] \pi] [/mm] und n [mm] \in \IN. [/mm] Wir definieren [mm] z_{n,k}:=exp [/mm] (kix/n) für k=0,1,...,n, sowie [mm] L_{n}:= \summe_{k=1}^{n} [/mm]  | [mm] z_{n,k}-z_{n,k-1} [/mm] |

a) Interpretieren Sie [mm] L_{n}(x) [/mm] geometrisch.
b) Zeigen Sie: [mm] L_{n}(x) [/mm] =2n sin(x/2n)
c) Beweisen Sie:  [mm] \limes_{n\rightarrow\infty} L_{n}(x)=x [/mm]

Hallo zusammen

Ich habe b) bereits umgeformt auf

[mm] L_{n}(x)= \summe_{k=1}^{n}¦exp(k-1/2)ix/n¦\*¦exp(ix/2n) [/mm] - exp(-ix/2n)¦

weiss jetzt aber nicht wie ich 2nsin(x/2n) daraus bekomme. Im zweiten Teil steht der Ansatz von sin, aber was mache ich mit dem ersteren Betrag?

Danke euch schon im voraus

        
Bezug
Berechnung der Kreisbogenlänge: Antwort
Status: (Antwort) fertig Status 
Datum: 00:52 Fr 06.01.2006
Autor: Christian


> Sei x  [mm]\in[/mm] [0,2 [mm]\pi][/mm] und n [mm]\in \IN.[/mm] Wir definieren
> [mm]z_{n,k}:=exp[/mm] (kix/n) für k=0,1,...,n, sowie [mm]L_{n}:= \summe_{k=1}^{n}[/mm]
>  | [mm]z_{n,k}-z_{n,k-1}[/mm] |
>  
> a) Interpretieren Sie [mm]L_{n}(x)[/mm] geometrisch.
>  b) Zeigen Sie: [mm]L_{n}(x)[/mm] =2n sin(x/2n)
>  c) Beweisen Sie:  [mm]\limes_{n\rightarrow\infty} L_{n}(x)=x[/mm]
>  
> Hallo zusammen
>  
> Ich habe b) bereits umgeformt auf
>
> [mm]L_{n}(x)= \summe_{k=1}^{n}¦exp(k-1/2)ix/n¦\*¦exp(ix/2n)[/mm] -
> exp(-ix/2n)¦
>  
> weiss jetzt aber nicht wie ich 2nsin(x/2n) daraus bekomme.
> Im zweiten Teil steht der Ansatz von sin, aber was mache
> ich mit dem ersteren Betrag?
>
> Danke euch schon im voraus  

Hallo.

Ich geb mal nen Hinweis...
Es ist [mm] $L_n(x)=\sum_{k=1}^{n}|e^{\frac{kix}{n}}-e^{\frac{(k-1)ix}{n}}|=\sum\underbrace{|e^{\frac{kix}{n}}|}_{=1}|1-e^{-\frac{x}{n}}|=\sum|1-e^{-\frac{ix}{n}}|$ [/mm]
Jetzt brauchst Du nochmal die Euler-Formel, Additionstheorem und bist fast fertig...
Ein Hinweis:
Wenn Du Dir die geometrische Interpretation ansiehst, ist die Formel geometrisch unmittelbar einsichtig.

Gruß,
Christian

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]