www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeBerechnung eines Parameters
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Extremwertprobleme" - Berechnung eines Parameters
Berechnung eines Parameters < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Berechnung eines Parameters: Tipp
Status: (Frage) beantwortet Status 
Datum: 09:57 Mi 05.02.2014
Autor: wolfgangmax

Aufgabe
Gegeben ist der Längsschnitt eines Bierglases. Die obere Begrenzung der Fläche kann im 1. Quadranten durch Funktionen mit der Gleichung

[mm]f(x)=x*e(1-ax)[/mm] [e hoch 1-ax]

beschrieben werden.
Bestimmen Sie a so, dass die breiteste Stelle des Glases in einer Höhe von 5 cm auftritt.
 


Meine Lösungsidee:
Ich setze die Ausgangsfunktion gleich 5. Dann erhalte ich eine Gleichung mit 2 Unbekannten, nämlich x und a. An x störe ich mich zunächst nicht und versuche die Gleichung nach a aufzulösen.
Dann erhalte ich:

[mm]x*e(1-ax)=5[/mm]

Jetzt habe ich das Problem, dass x sowohl im 1. Faktor als auch im 2. Faktor (und das sogar im Exponenten)
existiert.

Es bietet sich jetzt an, die Gleichung zu logarithmieren:

[mm]ln [(x*e^(1-ax)]=ln5[/mm]

Sofern dieser Schritt mathematisch richtig ist, wüsste ich nicht weiter, wie man die Gleichung nach a auflöst.

Ich würde mich über einige Tipps (ein Tipp wird möglicherweise nicht reichen) sehr freuen.


 

        
Bezug
Berechnung eines Parameters: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:02 Mi 05.02.2014
Autor: Diophant

Hallo,

hier stand ein Irrtum. :-)

Gruß, Diophant

Bezug
        
Bezug
Berechnung eines Parameters: Antwort
Status: (Antwort) fertig Status 
Datum: 10:17 Mi 05.02.2014
Autor: Sax

Hi,

wenn du dir den Graphen der Funktion ansiehst, erkennst du, dass dieser nur dann den Querschnitt eines Bierglases darstellen kann, wenn man das Glas als liegend ansieht.
Das bedeutet, dass im x-y-Koordinatensystem x für die Höhe des Glases und y für seinen Radius steht. Das eröffnet einigen Spielraum für die Interpretation der Aufgabe.

1. Variante: "In einer Höhe von 5 cm" bedeutet, dass das Maximum der Funktion bei x=5 zu suchen ist.
[mm] (f'(5)=0\Rightarrow [/mm] a= ...)

2. Variante (die du angefangen hast) : "In einer Höhe von 5 cm" meint die Höhe des Graphen im Koordinatensystem, also y=5.
Dann musst du zusätzlich zu deinen Überlegungen berücksichtigen, dass der Graph nicht nur an irgendeiner Stelle [mm] x_1 [/mm] den y-Wert 5 annimmt, sondern dass zusätzlich dies ein Maximum der Funktion darstellt, also außerdem [mm] f'(x_1)=0 [/mm] gilt. Das liefert eine zweite Gleichung, so dass du [mm] x_1 [/mm] und a bestimmen kannst.

Der Witz an der Sache ist, dass beide Interpretationen zum selben Ergebnis führen, aber das merkt man erst hinterher.

Gruß Sax.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]