www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationBereichsintegrale
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integration" - Bereichsintegrale
Bereichsintegrale < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bereichsintegrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:46 So 15.06.2008
Autor: babsbabs

Aufgabe
B sei das durch die Punkte (0,0), (1,1), (1,-2) und (4,3) festgelegte Viereck. Berechnen Sie [mm] \integral_{}^{}{ \integral_{B}^{}{f(xy-x^2+y^2) dx}dx} [/mm]

Hab leider keine Ahnung wie ich die Grenzen wählen soll..

Bitte um Hilfe!

        
Bezug
Bereichsintegrale: Antwort
Status: (Antwort) fertig Status 
Datum: 11:53 Mo 16.06.2008
Autor: schachuzipus

Hallo Barbara,

auch hier gilt:

zunächst mal zeichnen!

Als ich das 4Eck eingezeichnet habe, kam ich auf die Idee, den Bereich in 2 Dreiecke aufzuteilen und dann statt über den gesamten Bereich des 4Ecks zu integrieren, über beide Dreiecke zu integrieren und die Integrale zu addieren

Einmal hast du das Dreieck mit den Eckpunkten $(0,0), (1,-2)$ und $(1,1)$

Damit also [mm] $0\le x\le [/mm] 1$

Dann stelle die Gleichungen der beiden Geraden auf, die $(0,0)$ mit $(1,1)$ resp. $(0,0)$ mit $(1,-2)$ verbinden ...

Damit bekommst du deine Grenzen für y (y oberhalb der Geraden von $(0,0)$ nach $(1,-2)$ und unterhalb der Geraden von $(0,0)$ nach $(1,1)$

Bleibt der zweite Teilbereich:

Da stelle wieder die Gleichungen der Dreieckseiten auf, die $(1,1)$ mit $(4,3)$ resp. $(1,-2)$ mit $(4,3)$ verbinden.

Dann berechne den Schnittpunkt der letzteren mit der x-Achse, das liefert dir die obere Grenze für x

Die Grenzen für y kannst du analog zum ersten Teilintegral bestimmen.


LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]