www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitsrechnungBernoulli (glaub ich)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Wahrscheinlichkeitsrechnung" - Bernoulli (glaub ich)
Bernoulli (glaub ich) < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bernoulli (glaub ich): Aufgbe
Status: (Frage) beantwortet Status 
Datum: 14:04 Sa 10.06.2006
Autor: dytronic

Aufgabe
Vor der Welturaufführung des neuen Stücks der Theatergruppe " Die Schminke " sind kurz
nach Beginn des Kartenvorverkaufs alle Karten vergriffen. Nur auf dem Schwarzmarkt sind
noch Karten zu haben. Ein Schwarzhändler bietet 20 Karten an, darunter 8 gefälschte. Eine
Person kauft 4 Karten. Mit welcher Wahrscheinlichkeit erhält sie
a) nur echte Karten,
b) mindestens eine echte Karte,
c) genau eine gefälschte Karte ?

Hallo,

auf die oben stehende aufgabe bin ich gestoßen und wollte wissen ob meine Ergebnisse richtig sind und ob ich hier das Bernoulli verfahren anwenden darf?

a)  P (4; [mm] \bruch{12}{20};4) [/mm]   : die erste 4 steht für die 4 gekauften karten, die [mm] \bruch{12}{20} [/mm] = [mm] \bruch{3}{5} [/mm] steht für eine richtige karte zu bekommen und die letzte 4 steht dass von den 4 karten alle echt sind:

[mm] \vektor{4 \\ 4} [/mm] *  [mm] (\bruch{3}{5})^{4} [/mm] * [mm] (\bruch{2}{5})^{0} [/mm] = 1*0,1296*1 = 12,96 %

b) Hier wende ich zu schnelleren Berechnung die Gegenwahrscheinlichkeit an, also: höchstens keine echte Karte = alle falsch dann rechne ich 1- ergebnis:

P [mm] (4;\bruch{3}{5};0) [/mm] =   [mm] \vektor{4 \\ 0} [/mm] * [mm] (\bruch{3}{5})^{0} [/mm] * [mm] (\bruch{2}{5})^{4} [/mm] = 1*1 * 0,0256 = 1- 0,0256 = 97,44%

c) P [mm] (4;\bruch{2}{5};1) [/mm]  , hier muss mab mit 2/5 rechnen, da nach falschen karten gefragt ist =   [mm] \vektor{4 \\ 1} [/mm] * [mm] (\bruch{2}{5})^{1} [/mm] * [mm] (\bruch{3}{5})^{3} [/mm] =4 * 0,4 * 0,216 = 34,56 %

Sit das richtig?

bin mir nicht ganz sicher ob ich mit bernoulli rechnen darf, da ja die wahrscheinlichkeit nicht immer konstant bleibt, weil wenn ich eien falsche karte kaufe, dann verändert sich aj die wahrscheinlichkeit...


        
Bezug
Bernoulli (glaub ich): Antwort
Status: (Antwort) fertig Status 
Datum: 14:57 Sa 10.06.2006
Autor: M.Rex


> Vor der Welturaufführung des neuen Stücks der Theatergruppe
> " Die Schminke " sind kurz
>  nach Beginn des Kartenvorverkaufs alle Karten vergriffen.
> Nur auf dem Schwarzmarkt sind
>  noch Karten zu haben. Ein Schwarzhändler bietet 20 Karten
> an, darunter 8 gefälschte. Eine
>  Person kauft 4 Karten. Mit welcher Wahrscheinlichkeit
> erhält sie
>  a) nur echte Karten,
>  b) mindestens eine echte Karte,
>  c) genau eine gefälschte Karte ?
>  Hallo,
>  
> auf die oben stehende aufgabe bin ich gestoßen und wollte
> wissen ob meine Ergebnisse richtig sind und ob ich hier das
> Bernoulli verfahren anwenden darf?
>  
> a)  P (4; [mm]\bruch{12}{20};4)[/mm]   : die erste 4 steht für die 4
> gekauften karten, die [mm]\bruch{12}{20}[/mm] = [mm]\bruch{3}{5}[/mm] steht
> für eine richtige karte zu bekommen und die letzte 4 steht
> dass von den 4 karten alle echt sind:
>  
> [mm]\vektor{4 \\ 4}[/mm] *  [mm](\bruch{3}{5})^{4}[/mm] * [mm](\bruch{2}{5})^{0}[/mm]
> = 1*0,1296*1 = 12,96 %
>  

Korrekt

> b) Hier wende ich zu schnelleren Berechnung die
> Gegenwahrscheinlichkeit an, also: höchstens keine echte
> Karte = alle falsch dann rechne ich 1- ergebnis:
>  
> P [mm](4;\bruch{3}{5};0)[/mm] =   [mm]\vektor{4 \\ 0}[/mm] *
> [mm](\bruch{3}{5})^{0}[/mm] * [mm](\bruch{2}{5})^{4}[/mm] = 1*1 * 0,0256 = 1-
> 0,0256 = 97,44%
>  

Auch korrekt

> c) P [mm](4;\bruch{2}{5};1)[/mm]  , hier muss mab mit 2/5 rechnen,
> da nach falschen karten gefragt ist =   [mm]\vektor{4 \\ 1}[/mm] *
> [mm](\bruch{2}{5})^{1}[/mm] * [mm](\bruch{3}{5})^{3}[/mm] =4 * 0,4 * 0,216 =
> 34,56 %
>  
> Sit das richtig?

Yep, alles Korrekt und sehr gut erklärt.

>  
> bin mir nicht ganz sicher ob ich mit bernoulli rechnen
> darf, da ja die wahrscheinlichkeit nicht immer konstant
> bleibt, weil wenn ich eien falsche karte kaufe, dann
> verändert sich aj die wahrscheinlichkeit...
>    

Das wird ja mit Hilfe der Formel berücksichtigt, deswegen ist sie ja so gebräuchlich und praktisch.

Marius

Bezug
                
Bezug
Bernoulli (glaub ich): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:03 Sa 10.06.2006
Autor: dytronic

Mein Kumpel ist anderer meinung.... ich zweifle auch ein bisschen dran....wenn ich doch 1 falsche karte kaufe dann ist doch die wahrscheinlichkeit doch nicht mehr 8/20 sondern 7/19   oder wenn ich eien richtige kaufe ist es doch nicht mehr 12/20 sondern 11/ 19... erist der meinung mann muss es mit der kombinatorik errechnen, nach dem verfahhren wie groß die wahrscheinlichkeit ist 4 richige im lotto zu ziehen, also halt mit anderen zahlen....bin ejtzt selbst verwirrt

Bezug
                        
Bezug
Bernoulli (glaub ich): Antwort
Status: (Antwort) fertig Status 
Datum: 15:15 Sa 10.06.2006
Autor: M.Rex

Zur Not zeichne doch mal ein Baumdiagramm und berechne daran die W.-keiten. Ich meine aber weiterhin, es geht auch mit Hilfe der Formel.

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]