www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale FunktionenBerührpunkt berechnen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Ganzrationale Funktionen" - Berührpunkt berechnen
Berührpunkt berechnen < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Berührpunkt berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:51 Sa 16.09.2006
Autor: Nastja0

Aufgabe
Für jedes t>0 ist eine Funktion [mm] f_{t} [/mm] gegeben durch [mm] f_{t}=tx-x³. [/mm] Ihr Schaubild sei [mm] K_{t}. [/mm]
a) Untersuchen Sie [mm] K_{t} [/mm] auf Schnittpunkte mit der x-Achse, Hoch-, Tief- und Wendepunkte. Zeichnen Sie [mm] K_{1}, K_{2} [/mm] und [mm] K_{4} [/mm] in ein gemeinsames Achsenkreuz.
b) Zeichnen Sie nun den Graphen von g mit g(x)=0,5(3x²+7) in das vorhandene Achsenkreuz.
c) Bestimmen Sie diejenige Kurve [mm] K_{t}, [/mm] die den Graphen von g berührt. Geben Sie die Koordinaten des Berührpunktes und die Gleichung der gemeinsamen Tangente an.

Ich habe mir zu c) überlegt, dass man zur Bestimmung von t die Ableitungen von [mm] f_{t} [/mm] und g gleichsetzt. Dann komme ich zu: t=3x+3x² Und wie geht's weiter?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Berührpunkt berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:15 Sa 16.09.2006
Autor: leduart

Hallo Nastja
Die 2 Kurven müssen den Punkt ja auch gemeinsam haben. Also 1. die 2 Kurven schneiden,Schnittpunkt (x1,y1)  2. im Schnittpunkt (der von t abhängt) muss die Steigung gleich sein.
Gruss leduart.

Bezug
                
Bezug
Berührpunkt berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:27 Sa 16.09.2006
Autor: Nastja0

Ja, aber wenn ich jetzt den Schnittpunkt berechnen will, hab ich wieder eine Variable zu viel (t). Erst muss ich t berechnen und dann den Berührpunkt ermitteln... ???

Bezug
                        
Bezug
Berührpunkt berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:36 Sa 16.09.2006
Autor: Palin

Wenn du erst die Funktionen g(x) = [mm] f_{t} [/mm] setst, hatst du dein erste Gleichung.
Mit der Ableitung (was du ja schon gelöst hast) die Zweite.

2 Gleichungen , 2 Variabeln also ein Lösbares Gleichungssystem.





Bezug
                                
Bezug
Berührpunkt berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:38 Sa 16.09.2006
Autor: Nastja0

Ah! *donk* Danke.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]