www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometrieBerührpunkte von Netzen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Topologie und Geometrie" - Berührpunkte von Netzen
Berührpunkte von Netzen < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Berührpunkte von Netzen: begriffsfrage
Status: (Frage) überfällig Status 
Datum: 03:20 Do 22.10.2009
Autor: cycore

Aufgabe
Ist [mm] $x_{\alpha}$ [/mm] ein [mm] $\{F_\alpha\}$ [/mm] zugeordnetes gerichtetes System, so ist der [mm] $x_{\alpha}$ [/mm] zugeordnete Filter feiner als [mm] $\{F_\alpha\}$ [/mm] und hat die selben Berührungspunkte wie [mm] $x_{\alpha}$. [/mm] Die Berührungspunkte der [mm] $\{F_\alpha\}$ [/mm] zugeordneten gerichteten Systeme sind also Berührungspunkte von [mm] $\{F_\alpha\}$. [/mm]

Hallo, ich muss diesen Satz beweisen - der erste Teil ist ja klar (also das der filter feiner ist)...

Aber weder in dem Buch aus dem der Satz stammt noch sonstwo finde ich eine Definition zu Berührungspunkten eines Gerichteten Systems (Das ist wohl ein anderes Wort für Netz).
Hoffentlich weiß das jemand hier? Ich hab schon spekuliert, ob der letzte Satz vielleicht nicht zu beweisen ist sondern ebendie Definition ist?
oder ist es nicht vielmehr so das es für jeden Berührpunkt des Filters ein dem Filter zugeordnetes Netz existiert das gegen den Berührpunkt konvergiert!?!

Würde mich sehr freuen über Hilfe - LG cycore

        
Bezug
Berührpunkte von Netzen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:20 Fr 06.11.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Berührpunkte von Netzen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 04:15 So 08.11.2009
Autor: cycore

für die die es interessiert - hab ne definition gefunden...
ein punkt hißt berührungspunkt eines netzes [mm] $\{x_\alpha\}_{\alpha \in A}$ [/mm] wenn es ein kofinales Teilsystem [mm] $B\subset [/mm] A$ gibt, für das [mm] $\{x_\beta\}_{\beta \in B}$ [/mm] konvergiert...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]