www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisBerührpunkte von Tangenten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Schul-Analysis" - Berührpunkte von Tangenten
Berührpunkte von Tangenten < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Berührpunkte von Tangenten: Frage
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 12:28 So 13.02.2005
Autor: mjk

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


f(x) = 1/x
Sie hat 2 Tangenten, welche durch P (6/7;4/7) gehen. Berechne ihre Berührpunkte. Welche Bedingung müssen a,b erfüllen, damit durch Q (a;b) zwei Tangenten gehen?

Danke für alle Tipps

        
Bezug
Berührpunkte von Tangenten: Tipps
Status: (Antwort) fertig Status 
Datum: 13:37 So 13.02.2005
Autor: Youri

Hallo MJK!

[willkommenmr]

Hast Du Dir schon unsere Forenregeln durchgelesen?

Es wäre schön, wenn Du uns Deine Überlegungen zu den Aufgaben mitteilst.
Dann wissen wir auch eher, wo es hakt... ;-)

> f(x) = 1/x
>  Sie hat 2 Tangenten, welche durch P (6/7;4/7) gehen.
> Berechne ihre Berührpunkte. Welche Bedingung müssen a,b
> erfüllen, damit durch Q (a;b) zwei Tangenten gehen?

> Danke für alle Tipps

Dann mal ein paar Tips...

1. Tangenten sind nichts anderes als lineare Funktionen der Form [mm]g(x)=m*x+b[/mm].
Die Funktionsgleichung einer Geraden kannst Du bestimmen, wenn Du zwei Punkte kennst. Wenn Du nicht mehr weißt, wie das geht, findest Du unter dem Stichwort MBSteigung Hinweise, wie man [mm]m[/mm] berechnet. Den Achsenabschnitt kannst Du danach auch berechnen, indem Du einen der beiden bekannten Punkte einsetzt.
=> Du kannst also die  Funktionsvorschrift der Tangenten bestimmen.

2. Was muss gelten, wenn die Tangente und die Funktion sich berühren?
Die Funktionswerte sind gleich => gleichsetzen...!

3. Etwas anders formuliert zur letzten Frage: Welche Bedingungen müssen vorherrschen, damit es eine Tangente mit zwei Berührpunkten gibt?
Dazu müsstest Du Dir jetzt mal etwas überlegen...
Was weißt Du über die Steigung in den beiden Berührpunkten?
Welche Zusammenhänge müssen noch erfüllt sein?
Beschreibe doch mal Deine Ideen!

Lieben Gruß,
Andrea.

Bezug
                
Bezug
Berührpunkte von Tangenten: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 17:13 So 13.02.2005
Autor: mjk

Vielen Dank für deine Tipps. Das Problem ist, ich kenne nur einen Punkt, wo sich die beiden Tangenten treffen (sechs Siebtel, vier Siebtel). Eine Gleichung habe ich berechnet, aber die zweite nicht.

Bezug
                        
Bezug
Berührpunkte von Tangenten: Antwort
Status: (Antwort) fertig Status 
Datum: 17:45 So 13.02.2005
Autor: Fugre


> Vielen Dank für deine Tipps. Das Problem ist, ich kenne nur
> einen Punkt, wo sich die beiden Tangenten treffen (sechs
> Siebtel, vier Siebtel). Eine Gleichung habe ich berechnet,
> aber die zweite nicht.
>  

Hallo mjk,

du bringst hier 2 Dinge durcheinander. Du gehst von den Schnittpunkten der Tangenten
aus, davon gibt es nur einen und der liegt bei [mm] $P(\bruch{6}{7}/\bruch{4}{7}$. [/mm]
Was du aber suchst sind die Berührpunkte der Tangenten mit dem Graph der Funktion.

Von den Tangenten weißt du, dass der Punkt P auf ihnen liegt.
Also kannst du für deine beiden Tangenten schreiben:
(1) [mm] $t_{1,2}(\bruch{6}{7})=m*\bruch{6}{7}+b=\bruch{4}{7}$ [/mm]

Außerdem weißt du, dass diese Tangenten den Graph der Funktion berühren, sagen wir, dass
sie in den Punken [mm] $B_{1,2}(b_{1,2}/f(b_{1,2})$ [/mm] berühren.

An diesen Punkten B müssen nun 2 Dinge gelten:
(1) [mm] $t_{1,2}(b_{1,2})=f(b_{1,2})$ [/mm]
(2) [mm] $t'_{1,2}(b_{1,2})=f'(b_{1,2})$ [/mm]

Mit diesen Informationen solltest du jetzt erstmal etwas weiterkommen.

Ich hoffe, dass ich dir helfen konnte. Sollte etwas unklar sein, so frag bitte nach.

Liebe Grüße
Fugre

Bezug
                                
Bezug
Berührpunkte von Tangenten: alles klar
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:37 So 13.02.2005
Autor: mjk

Jetzt ist schon alles klar. Vielen Dank! Das war sehr behilflich.

Bezug
                        
Bezug
Berührpunkte von Tangenten: Berührpunkt = Steigung gleich
Status: (Antwort) fertig Status 
Datum: 18:05 So 13.02.2005
Autor: informix

Hallo mjk,

> Vielen Dank für deine Tipps. Das Problem ist, ich kenne nur
> einen Punkt, wo sich die beiden Tangenten treffen (sechs
> Siebtel, vier Siebtel). Eine Gleichung habe ich berechnet,
> aber die zweite nicht.
>  

eine anderen Ansatz findest du durch folgende Überlegung:
Die Tangente geht durch P und hat dieselbe Steigung wie die Funktion an der Stelle [mm] x_B, [/mm] also im Berührpunkt.
Zusammen mit der Bedingung, die Youri dir schon genannt hat, solltest du jetzt genug Anhaltspunkte haben, um Gleichungen aufstellen zu können.
Zeig sie uns - und wir schauen mal drüber, ob alles stimmt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]