Beschränktes Wachstum < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:57 Do 09.12.2010 | Autor: | Hanz |
Hallo,
mich würde mal interessieren wie man bei einem Beschränkten Wachstum von der Formel: f'(t)=k*(S-f(t)) auf die Formel f(t)=S+(f(0)- [mm] S)*e^{-k*t} [/mm] gelangt.
Dazu muss ich sagen, ich weiss es ist die Lösung der obigen Differentialgleichung, aber wir hatten in der Schule noch keine Integrale. Ich weiss aber, dass f'(t)~S-f(t) ist und man k*(S-f(t)) umschreiben kann zu [mm] e^{k*t}*(S-f(0)). [/mm]
Nun ist aber mein Problem, dass ich in der e-Funktion ein positives Vorzeichen bei k bekommen... was ist mein Fehler?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
> Hallo,
>
> mich würde mal interessieren wie man bei einem
> Beschränkten Wachstum von der Formel: f'(t)=k*(S-f(t)) auf
> die Formel f(t)=S+(f(0)- [mm]S)*e^{-k*t}[/mm] gelangt.
>
> Dazu muss ich sagen, ich weiss es ist die Lösung der
> obigen Differentialgleichung, aber wir hatten in der Schule
> noch keine Integrale. Ich weiss aber, dass f'(t)~S-f(t) ist
> und man k*(S-f(t)) umschreiben kann zu [mm]e^{k*t}*(S-f(0)).[/mm]
> Nun ist aber mein Problem, dass ich in der e-Funktion ein
> positives Vorzeichen bei k bekommen... was ist mein
> Fehler?
Hallo,
ich bin mir nicht ganz sicher, ob ich deine Frage richtig verstanden habe.
Es geht ja um ein Wachstum, welches beschränkt ist durch S mit dem Startwert f(0), welcher kleiner als die Schranke S ist.
Du meinst nun, daß die Funktion f lautet: f(t)=S+(f(0)- [mm] $S)*e^{\red{+}k*t}$ [/mm] mit einem positiven k?
f(0)-S ist negativ, [mm] e^{kt} [/mm] für jeses t positiv. Also wird von der oberen Schranke S immer etwas subtrahiert. das ist ja in Ordnung.
Aber: [mm] e^{kt} [/mm] ist eine monoton wachsende Funktion, somit subtrahierst Du mit wachsendem t immer mehr von S, entfernst Dich also also von S. Und dies ist ja nicht im Sinne des Erfinders...
Wenn Du Deine Funktion ableitest, bekommst Du
f'(t)=k*(f(0)- [mm] $S)*e^{\red{+}k*t}$.
[/mm]
Du kannst Dir überlegen, daß die Ableitung überall negativ ist, die Funktion wächst also nicht.
Wenn Du allerdings sagst: für k<0 beschreibt f(t)=S+(f(0)- [mm] $S)*e^{\red{+}k*t}$ [/mm] beschränktes Wachstum, dann hast Du recht.
Bei der Dir vorliegenden Funktion f(t)=S+(f(0)- [mm] $S)*e^{\green{-}k*t}$ [/mm] fehlt die Angabe, daß k>0 ist.
Gruß v. Angela
>
>
>
>
>
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
|
|
|
|