Beschränktheit < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Betrachte die Einheitskugel B in C[0,1], also
B = [mm] \{f\in C[0,1] : ||f||_{\infty} \le 1 \}, [/mm]
ausgestattet mit der Supremumsnorm (also, [mm] ||.||_{\infty}). [/mm] Ist es wahr, daß jede stetige Funktion F : B [mm] \to \IR [/mm] beschränkt ist? Beweisen Sie es, wenn es wahr ist, anderenfalls, finden Sie ein Gegenbeispiel! |
Ich habe inzwischen einen Satz aus der Vorlesung gefunden, der besagt, daß in einem unendlich-dimensionalen Vektorraum V in jeder Norm ||.|| die "abgeschlossene Einheitskugel", also [mm] \{x \in V : ||x|| \le 1 \}, [/mm] nicht kompakt ist.
Nun ist meine Idee, als Gegenbeispiel irgendeine Funktion, etwa den natürlichen Logarithmus von der Supremumsnorm einer Funktion aus B zu nehmen, also f [mm] \mapsto ln(||f||_{\infty}) [/mm] für alle f [mm] \in [/mm] B.
Bleibt noch die Frage, wie ich zeigen kann, daß meine so gewählte Abbildung auch stetig auf ganz B ist - und irgendwo muß da wohl die Unendlich-Dimensionalität von C[0, 1] und/oder die Nicht-Kompaktheit von B ins Spiel kommen, nur, daß ich nicht sehe, wie.
Vielen Dank bereits im Voraus für eure Hilfe!
Beste Grüße,
Alex
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 01:20 Mi 22.11.2006 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|