www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenBestimmte Divergenz
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - Bestimmte Divergenz
Bestimmte Divergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmte Divergenz: Idee
Status: (Frage) beantwortet Status 
Datum: 19:01 Sa 05.11.2011
Autor: Levit

Aufgabe
Zeigen sie mittels der Definition bestimmter Divergenz, dass wenn [mm] a_n->-\infty [/mm] und [mm] b_n->-\infty, [/mm] dann [mm] a_n*b_n->\infty. [/mm]

Ich habe da so recht keine Idee wie ich das zeigen soll. Vieleicht hat jemand mal nen Ansatz.
Danke schon mal.

        
Bezug
Bestimmte Divergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 19:25 Sa 05.11.2011
Autor: Schadowmaster

moin Levit,

Du sollst das mit Hilfe der Definition von bestimmter Divergenz zeigen.^^
Also ist Schritt 1 erstmal diese rauszusuchen und hinzuschreiben.
Also erzähl mal wie ihr das definiert habt und was nach Definition für die beiden Folgen gilt.
Wenn du die Eigenschaften der Folgen aus der Definition rausgezogen hast dann dürfte das schon ausreichend sein um zu zeigen, dass das Produkt der Folgen dann genau die selbe Definition erfüllt.


lg

Schadow


Bezug
                
Bezug
Bestimmte Divergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:37 Sa 05.11.2011
Autor: Levit

Also die bestimmte Divergenz haben wir definiert mit:
[mm] a_n [/mm] heißt bestimmt divergent gegen [mm] \infty, [/mm] wenn zu jedem K [mm] \in\IR [/mm] ein [mm] N\in\IN [/mm] existiert, so dass [mm] a_n>K [/mm] für alle [mm] n\ge [/mm] N.

Zu den Folgen aus der Aufgabe ist nichts weiter gegeben, es soll für alle gelten.

Bezug
                        
Bezug
Bestimmte Divergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 19:53 Sa 05.11.2011
Autor: gnom347


> Also die bestimmte Divergenz haben wir definiert mit:
>  [mm]a_n[/mm] heißt bestimmt divergent gegen [mm]\infty,[/mm] wenn zu jedem
> K [mm]\in\IR[/mm] ein [mm]N\in\IN[/mm] existiert, so dass [mm]a_n>K[/mm] für alle
> [mm]n\ge[/mm] N.

In deiner Aufgabe Konvergieren an   und bn aber gegen -$ [mm] \infty, [/mm] $
Du schreibst dir also hin was es  bedeutet, das an und bn gegen -$ [mm] \infty, [/mm] $
Konvergieren und versuchst aus dieser vorraussetzung zu folgern das
an*bn gegen +$ [mm] \infty, [/mm] $  konvergiert (schreib am besten auch nochmal hin was das für ab*bn nach definition bedeutet.
Wenn du das Sauber gemacht hast, und dir klar ist was du eigendlich machen must, ist der rest nicht mehr schwer.

>  
> Zu den Folgen aus der Aufgabe ist nichts weiter gegeben, es
> soll für alle gelten.

Ja du brauchst auch keine weiteren angaben für den Beweis.


Bezug
                                
Bezug
Bestimmte Divergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:05 Sa 05.11.2011
Autor: Levit

Wenn es gegen [mm] -\infty [/mm] geht, heißt dass, das [mm] (-a_n) [/mm] gegen [mm] \infty [/mm] geht.
Wenn ich das für [mm] a_n [/mm] und [mm] b_n [/mm] machen mit [mm] (-a_n)>K, (-b_n)>L [/mm] bekomme ich:

[mm] (-a_n)*(-b_n)>(-a_n)*L>K*L=P [/mm]

und somit

[mm] (-a_n)*(-b_n)=a_n*b_n>P [/mm]

und somit konvergent gegen [mm] \infty. [/mm]

Das wäre mein Beweis, aber ich gehe davon aus, dass das nicht stimmt, denn sonst könnte ich ja damit auch beweisen, dass das Produkt zweier Folgen, die jeweils gegen [mm] \infty [/mm] konvergieren, [mm] gegen-\infty [/mm] konvergiert.

Bezug
                                        
Bezug
Bestimmte Divergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 20:33 Sa 05.11.2011
Autor: Schadowmaster


> Das wäre mein Beweis, aber ich gehe davon aus, dass das
> nicht stimmt, denn sonst könnte ich ja damit auch
> beweisen, dass das Produkt zweier Folgen, die jeweils gegen
> [mm]\infty[/mm] konvergieren, [mm]gegen-\infty[/mm] konvergiert.

Zu deinem Beweis oben:
Der stimmt soweit, du musst nur noch dazu sagen, dass n so zu wählen ist, dass [mm] $a_n$ [/mm] und [mm] $b_n$ [/mm] kleiner als 0 sind (damit du in deinem Beweis wirklich positive Zahlen multiplizierst).
Aber das ist ja kein Problem, wenn die Folgen gegen [mm] $-\infty$ [/mm] gehen.

Der Beweis für die beiden Folgen gegen [mm] $\infty$ [/mm] würde wahrscheinlich daran scheitern, dass [mm] $-a_n$ [/mm] dann nicht zwangsläufig positiv wäre.
Dann würde sich in deiner Ungleichungskette irgendwo eines der Zeichen umdrehen und damit geht es schief (was es ja wie du richtig festgestellt hast auch bitte sollte^^).


lg

Schadow

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]