www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMaßtheorieBestimmte Menge sigma Algebra
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Maßtheorie" - Bestimmte Menge sigma Algebra
Bestimmte Menge sigma Algebra < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmte Menge sigma Algebra: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:21 Fr 16.12.2011
Autor: shadee

Aufgabe
Sei p [mm] \in \mathbb{N} [/mm] und S eine Menge mit 2p Elementen. Übeprüfe (in Abhängigkeit von p) ob {A [mm] \subset [/mm] S | die Zahl der Elemente von A ist gerade} eine sigma Algebra ist und ob es ein Dynkinsystem ist.

Ich hab raus, dass es weder noch ist. Gegenbeispiel: Sei p = 2 und S = {A,B,C,D}. Somit ist [mm] \mathcal{F} [/mm] = {S, [mm] \emptyset, [/mm] {A,B},{A,C},{A,D},{B,C},{B,D},{C,D}}. Es fehlen aber für die sigma Algebra die endlichen Vereinigungen beispielsweise {A,B} [mm] \cup [/mm] {A,C} = {A,B,C}. Welches nach Definition aber nicht in [mm] \mathcal{F} [/mm] sein soll. Das gleiche gilt für das Dynkinsystem (endliche Schnitte würde auch zum Teil einelementige Mengen liefern).

Normalerweise reicht es ja aus, ein Gegenbeispiel zu zeigen. Kanne s aber sein, dass es für größere p wieder funktioniert und muss ich dann eher das untersuchen?

        
Bezug
Bestimmte Menge sigma Algebra: Antwort
Status: (Antwort) fertig Status 
Datum: 19:23 Fr 16.12.2011
Autor: donquijote


> Sei p [mm]\in \mathbb{N}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

und S eine Menge mit 2p Elementen.

> Übeprüfe (in Abhängigkeit von p) ob {A [mm]\subset[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

S | die

> Zahl der Elemente von A ist gerade} eine sigma Algebra ist
> und ob es ein Dynkinsystem ist.
>  Ich hab raus, dass es weder noch ist. Gegenbeispiel: Sei p
> = 2 und S = {A,B,C,D}. Somit ist [mm]\mathcal{F}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

= {S,

> [mm]\emptyset,[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

{A,B},{A,C},{A,D},{B,C},{B,D},{C,D}}. Es fehlen

> aber für die sigma Algebra die endlichen Vereinigungen
> beispielsweise {A,B} [mm]\cup[/mm] {A,C} = {A,B,C}.

Das stimmt, also liegt für p=2 keine [mm] \sigma-Algebra [/mm] vor

> Welches nach
> Definition aber nicht in [mm]\mathcal{F}[/mm] sein soll. Das gleiche
> gilt für das Dynkinsystem (endliche Schnitte würde auch
> zum Teil einelementige Mengen liefern).

Schau noch mal nach, wie ihr ein Dynkin-System D definiert habt.
Beliebige Durchschnitte von Mengen aus D müssen jedenfalls nicht in D liegen, also zieht hier dein Argument nicht.

>  
> Normalerweise reicht es ja aus, ein Gegenbeispiel zu
> zeigen. Kanne s aber sein, dass es für größere p wieder
> funktioniert und muss ich dann eher das untersuchen?

Da steht "Übeprüfe (in Abhängigkeit von p)", d.h. die Gültigkeit der Aussage ist für alle p zu prüfen.
Für p>2 funktioniert dein Gegenbeispiel zur [mm] \sigma-Algebra [/mm] genauso, da du dann auch {a,b} und {a,c} als Teilmengen von S betrachtet kannst. Es bleibt der Fall p=1, der gesondert betrachtet werden muss.

Bezug
                
Bezug
Bestimmte Menge sigma Algebra: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:03 Sa 17.12.2011
Autor: shadee

Ah natürlich. Ich war wohl etwas durcheinander. Dynkinsysteme hat nur alle endlichen Vereinigungen drin, wobei die Mengen jeweils paarweise disjunkt sind. Somit ist natürlich vorligendes Mengensystem ein Dynkinsystem, da ich nur paarweise disjunkte Mengen vereinige, die auch eine gerade Anzahl von Elementen haben und somit muss die entstehende Menge auch wieder geradzahlig sein. Danke für die Hilfe.

Beste Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]