Bestimmung Funktionswert < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Aufgabe | Gegeben ist der Graph einer Funktion g und zwei reelle Zahlen a und b mit [mm] a\not=0. [/mm] Der Graph von g wird um b in negative x-Richtung verschoben und der verschobene Graph um a in x-Richtung gestaucht (=um [mm] \bruch{1}{a} [/mm] in x-Richtung gestreckt). Es ensteht der Graph der Funktion f. In der Abbildung ist b=4 und a=3.
[Dateianhang nicht öffentlich]
Drücke f(x) mit Hilfe der Funktion g und f'(x) mithilfe der Ableitungsfunktion g' aus. |
Hallo,
ich habe ein Problem mit der Aufgabe. Was muss ich denn da machen, damit ich auf eine Lösung komme?
Unser Lehrer hat uns die Lösung angeschrieben: [mm] f(x)=\bruch{(x+4)^2}{3}
[/mm]
Wie kommt man da drauf?
Also ich hab folgendes versucht:
für g(x) weiß ich, dass
x=5x
m=1
y=f(x)
und P(0|2x) ist.
für f(x) weiß ich, dass
x=x
m=3
y=f(x)
und P(0|0) ist.
Kann ich da nun was mit dem Differenzenquotienten machen? Ich weiß ja die Steigung, also
[mm] m=\bruch{f(x)-f(x_0)}{x-x_0}
[/mm]
Aber wie komm ich nun weiter? Ist das überhaupt der richtige Ansatz?
Dateianhänge: Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:52 Sa 16.03.2013 | Autor: | leduart |
Hallo
ist es richtig, dass du die Funktionsgleichungder parabel suchst, die entsteht, wenn man [mm] f(x)=x^2 [/mm] um 4 nach rechts schiebt und dann mit dem Faktor 1/3 in y Richtung staucht?
Erster Schritt: verschiebe einen beliebigen Punkt [mm] x_1 [/mm] um 4 nach rechts. du kommst bei [mm] x__2=x_1+4 an.(x_1=x_2-4)
[/mm]
wenn du den Funktionswert von der neuen parabel [mm] g(x_2) [/mm] wissen willst musst du [mm] f(x_1) [/mm] ausrechnen, also [mm] g(x_2)=f(x_1) [/mm] das ist aber [mm] g(x_2)=f(x_1-4)=(x_1-4)^2
[/mm]
das gilt für alle [mm] x_2 [/mm] von g also hast du [mm] g(x)=(x-4)^2
[/mm]
jetzt willst du in y- Richtung stauchen, dazu muss jeder Wert von g(x) mit 1/3 multipliziert werden.
dadurch wird natürlich die Steigung in jedem Punkt auch 1/3 der Steigung.
war es das was dir unklar ist, sonst frag noch mal.
aber bitte: verkleinere deine Bilder, bevor du sie hier anhängst, sonst kann man sie auf einem normalen bildschirm nicht sehen.
gruss leduart
|
|
|
|
|
Sorry für das große Bild, kommt nicht nochmal vor...
Danke für die Antwort, jedoch habe ich noch ein paar Fragen/Anmerkungen:
Woher kann ich der Abbildung, bzw. dem Aufgabentext entnehmen, dass [mm] f(x)=x^2?
[/mm]
So wie ich das verstanden habe, ist ja der rechte Graph der Ursprungsgraph, also g(x) und der linke Graph ist der, dessen Funktionswert ich bestimmen muss, also f(x). Was der mittlere Graph angeht, habe ich keine Ahnng, was der da soll...
Somit würde der Graph ja auch nicht um [mm] \bruch{1}{3} [/mm] getsaucht, sondern um 3 gestreckt, oder?
Wenn ich mir die Antwort von unserem Lehrer anschaue und mir Deine Erklärung dazu nehme, macht das für mich sinn. Allerdings verstehe ich nicht, wieso man aus dieser Aufgabe erstens [mm] f(x)=x^2 [/mm] ablesen kann und zweitens wieso das dann auch noch durch drei geteilt wird und nicht mit 3 multipliziert wird, wenn man den rechten Graphen als Ursprungsgraphen nimmt?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:29 Sa 16.03.2013 | Autor: | leduart |
Hallo
der Graph links, der mit f bezeichnet ist, ist [mm] f(x)=x^2. [/mm] wenn eine Parabel durch 0 und 1 geht ist das die einzige Moglichkeit.
gesucht ist aber offensichtlich der Graph der rechten Funktion, ich nenne die g.
wenn man g nach links verschiebt und dann mit dem Faktor 3 dehnt, erhält man f(x)=x²
daraus kann man umgekehrt schliessen, wenn man f(x) mit 1/3 staucht und 4 nach rechts schiebt hat man g.
Euer Lenrer wollte (laut Losung) offensichtlich g(x) haben.
du kannst , wenn du [mm] g(x)=(x+4)^2/3 [/mm] hast dann natürlich zeigen, dass du f(x) bekommst, indem du g(x) 1.um 4 nach links verschiebst, er ergibt sich [mm] f_1(x)=g(x+4)=(x+4-4)^2/3
[/mm]
2. dann um 3 streckst, es ergibt sich [mm] f(x)=3*f_1(x)=3*(x^2/3=x^2
[/mm]
so klarer?
Grus leduart
|
|
|
|
|
Jetzt hab ich doch nochmal eine Frage.
Woher weiß ich denn, dass es sich um eine Parabel handelt? [mm] x^3,x^4, [/mm] etc. gehen doch auch durch 0 und 1...
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:11 So 17.03.2013 | Autor: | leduart |
Hallo
dass es eine Parabel ist kannst du nur fesstellen, wenn du mehrere Punkte ansiehst, oder auch noch die Steigung der Tangente in einem bekannten Punkt kennst, das war hier der Fall.
Aber exakt wissen, was für eine fkt man hat kann man aus einer Zeichnung nie, man nimmt die, die am ehesten innerhalb der Zeichnungsfensters passt. und da die einfachste.
Sonst kannst du es nur allgemein hinschreiben g(x)=f(x-4)/3
oder f(x)=3*g(x+4)
Gruss leduart
|
|
|
|