www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSteckbriefaufgabenBestimmung Variabler
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Steckbriefaufgaben" - Bestimmung Variabler
Bestimmung Variabler < Steckbriefaufgaben < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmung Variabler: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:45 So 18.03.2007
Autor: erlkoenig

Aufgabe
Das Schaubild hat in einer Funktion f mit

f(x)=a*x+b*cos(x) ; x [mm] \in \IR [/mm] ,

hat im Punkt Q [mm] (\pi/2|\pi/4) [/mm] die Steigung -1/2

Bestimmen sie a und b

Mein Frage ist recht simpel ich hab echt keine ahnung was ich da machen muss und ich verlange auch von keinem das er mir das vorrechnet, wobei es natürlich toll wäre wenn jemand die zeit hat, aber wenigestens einen lösungsansatz hätte wäre ich sehr dankbar.

Idee:
Wäre es hier möglich was ich mirüberlegt habe für a oder b Fantasiewerte einzusezten zb 1, um somit auf eine Lösung zu kommen?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Bestimmung Variabler: Antwort
Status: (Antwort) fertig Status 
Datum: 00:58 So 18.03.2007
Autor: schachuzipus

Hallo erlkoenig,

Nun, du hast die Funktion [mm] f(x)=a\cdot{}x+b\cdot{}\cos(x) [/mm] und die hat im Punkt [mm] Q=\left(\bruch{\pi}{2};\bruch{\pi}{4}\right) [/mm] die Steigung [mm] -\bruch{1}{2}. [/mm]

So, nun überlegen wir mal, welche Informationen wir aus den Angaben rausziehen können.

Zuerst soll die Steigung im Punkt Q [mm] -\bruch{1}{2} [/mm] sein.
Und was ist die Steigung an einer Stelle [mm] x_0? [/mm] Natürlich die Ableitung [mm] f'(x_0) [/mm] an der Stelle [mm] x_0. [/mm] Also [mm] f'\left(\bruch{\pi}{2}\right)=.....=-\bruch{1}{2} [/mm]

Als weitere Info haben wir den Punkt [mm] Q=\left(\bruch{\pi}{2};\bruch{\pi}{4}\right) [/mm]
Die Funktion f geht also durch den Punkt [mm] \left(\bruch{\pi}{2};\bruch{\pi}{4}\right), [/mm] dh, [mm] f\left(\bruch{\pi}{2}\right)=....=\bruch{\pi}{4} [/mm]

Mit diesen beiden Gleichungen solltest du die Koeffizienten a und b berechnen können.

Hilft das weiter?


Gruß

schachuzipus

Bezug
                
Bezug
Bestimmung Variabler: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:36 So 18.03.2007
Autor: erlkoenig

Nein tut mir leid ich bin wohl etwas eingerostet, mein Sohn rechnet das gerade in der Schule und ich hab das nun schon einige Jahre nicht mehr gemacht. Naja also das mit der ersten Ableitung = Steigung, bitte steinigt mich, dass ist mir jetzt grade wieder aufgegangen.

$ [mm] f'\left(\bruch{\pi}{2}\right)=.....=-\bruch{1}{2} [/mm] $
Das hätten wir nun kann ich nun hingehen und sagen,
[mm] f'\left(\bruch{\pi}{2}\right)=a*\bruch{2}{\pi}+b*cos(\bruch{2}{\pi})=-\bruch{1}{2} [/mm]
und so komme ich auf a bzw b,
naja irgendwie glaub ich mir selbst nicht vielleicht kannst du noch ein wenig ausführlicher werden, ich wäre dir sehr dankbar




Bezug
                        
Bezug
Bestimmung Variabler: Antwort
Status: (Antwort) fertig Status 
Datum: 01:53 So 18.03.2007
Autor: schachuzipus


> Nein tut mir leid ich bin wohl etwas eingerostet, mein Sohn
> rechnet das gerade in der Schule und ich hab das nun schon
> einige Jahre nicht mehr gemacht. Naja also das mit der
> ersten Ableitung = Steigung, bitte steinigt mich, dass ist
> mir jetzt grade wieder aufgegangen.
>  
> [mm]f'\left(\bruch{\pi}{2}\right)=.....=-\bruch{1}{2}[/mm]
>  Das hätten wir nun kann ich nun hingehen und sagen,
>  
> [mm]f'\left(\bruch{\pi}{2}\right)=a*\bruch{2}{\pi}+b*cos(\bruch{2}{\pi})=-\bruch{1}{2}[/mm]
>  und so komme ich auf a bzw b,
>  naja irgendwie glaub ich mir selbst nicht vielleicht
> kannst du noch ein wenig ausführlicher werden, ich wäre dir
> sehr dankbar
>  


Hallo nochmal,

nun, bevor du [mm] \bruch{\pi}{2} [/mm] in f' einsetzt, solltest du die Ableitung bilden:

Also f(x)=ax+bcos(x) [mm] \Rightarrow [/mm] f'(x)=a-bsin(x)

Da nun [mm] \bruch{\pi}{2} [/mm] einsetzen: [mm] f'\left(\bruch{\pi}{2}\right)=a-bsin\left(\bruch{\pi}{2}\right) [/mm]

Der sin ist an der Stelle [mm] \bruch{\pi}{2}=1, [/mm] also

[mm] a-bsin\left(\bruch{\pi}{2}\right)=a-b\cdot{}1=a-b [/mm]

Und das ist [mm] =-\bruch{1}{2}, [/mm] also [mm] a-b=-\bruch{1}{2} [/mm]

Das ist unsere erste Gleichung

Die zweite leiten wir aus der Info her, dass Q ein Punkt des Graphen der Funktion f ist,

also [mm] f\left(\bruch{\pi}{2}\right)=a\cdot{}\bruch{\pi}{2}+bcos\left(\bruch{\pi}{2}\right)=a\cdot{}\bruch{\pi}{2}+b\cdot{}0 [/mm] , da [mm] cos\left(\bruch{\pi}{2}\right)=0 [/mm] ist

[mm] =a\cdot\bruch{\pi}{2} [/mm]  

Das soll [mm] \bruch{\pi}{4} [/mm] sein, also [mm] a\cdot\bruch{\pi}{2}=\bruch{\pi}{4} [/mm]

Nun auf beiden Seite durch [mm] \bruch{\pi}{2} [/mm] teilen

[mm] \Rightarrow a=\bruch{\bruch{\pi}{4}}{\bruch{\pi}{2}} \Rightarrow a=\bruch{1}{2} [/mm]

Das nun in die erste Gleichung [mm] a-b=-\bruch{1}{2} [/mm] einsetzen:

[mm] \bruch{1}{2}-b=-\bruch{1}{2} \Rightarrow [/mm] b=1

Also haben wir a und b ermittelt, also

[mm] f(x)=\red{\bruch{1}{2}}+\red{1}\cdot{}\cos(x)=\bruch{1}{2}+\cos(x) [/mm]


Ich packe dir mal die so ermittelte Funktion f und ihre Tangente in Q in den Anhang, dann kannste das auch am Graphen nachvollziehen.


Lieben Gruß

schachuzipus


Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]