www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis-SonstigesBestimmung der Lösungsmenge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Analysis-Sonstiges" - Bestimmung der Lösungsmenge
Bestimmung der Lösungsmenge < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmung der Lösungsmenge: Idee, Tipp
Status: (Frage) beantwortet Status 
Datum: 00:36 Do 10.10.2013
Autor: Pettel

Aufgabe
[mm] (\wurzel{4x^2-36})/(\wurzel{9x+27})=2 [/mm]

Hey, ich sitze hier grade in der Vorbereitung in Mathe und habe irgendwie einen Blackout.
Ich habe die Gleichung so weit umgeformt, sodass nun steht:
[mm] 4x^2-36=2*\wurzel{9x+27}=\wurzel{4*9x+4*27} [/mm]
Mit pq-Formel dann aufgelöst und wir haben L={12}
Ist eigentlich ganz toll, das Problem ist aber, dass ich das ganze ohne TR leicht ausrechnen können muss. Und da scheint mir [mm] \wurzel{4,5^2+36} [/mm] irgendwie zu umständlich. Ich bräuchte einen ganz fixen Denkanstoß wie man das wohl wesentlich einfacher auflösen kann.
Wäre dankbar für jede Hilfe und die Auflösung meiner Blockade :o)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Bestimmung der Lösungsmenge: Antwort
Status: (Antwort) fertig Status 
Datum: 00:58 Do 10.10.2013
Autor: glie


> [mm](\wurzel{4x^2-36})/(\wurzel{9x+27})=2[/mm]
>  Hey, ich sitze hier grade in der Vorbereitung in Mathe und
> habe irgendwie einen Blackout.
>  Ich habe die Gleichung so weit umgeformt, sodass nun
> steht:
>  [mm]4x^2-36=2*\wurzel{9x+27}=\wurzel{4*9x+4*27}[/mm]
>  Mit pq-Formel dann aufgelöst und wir haben L={12}
>  Ist eigentlich ganz toll, das Problem ist aber, dass ich
> das ganze ohne TR leicht ausrechnen können muss. Und da
> scheint mir [mm]\wurzel{4,5^2+36}[/mm] irgendwie zu umständlich.
> Ich bräuchte einen ganz fixen Denkanstoß wie man das wohl
> wesentlich einfacher auflösen kann.
>  Wäre dankbar für jede Hilfe und die Auflösung meiner
> Blockade :o)

Hallo und herzlich [willkommenmr]

Also da gibt es sicher mehrere Wege, die zum Ziel führen.

Ich würde mir erst mal Gedanken Über die Definitionsmenge machen.
Zwei Bedingungen sind zu erfüllen:

Erstens:
[mm] $4x^2-36\ge [/mm] 0$
[mm] $4x^2\ge [/mm] 36$
[mm] $x^2\ge9$ [/mm]
[mm] $|x|\ge3$ [/mm]
[mm] $x\le [/mm] -3 [mm] \vee [/mm] x [mm] \ge [/mm] 3$

Zweitens:
$9x+27> 0$
$9x> -27$
$x> -3$

Also ergibt sich [mm] $D=]-\infty;-3[\cup [3;\infty[$ [/mm]

Ich persönlich würde jetzt die linke Seite der Gleichung vereinfachen. Das kann man ja zunächst mal unter eine Wurzel schreiben:

[mm] $\wurzel{\bruch{4x^2-36}{9x+27}}=2$ [/mm]       Ausklammern
[mm] $\wurzel{\bruch{4(x^2-9)}{9(x+3)}}=2$ [/mm]      Binomische Formel
[mm] $\wurzel{\bruch{4(x+3)(x-3)}{9(x+3)}}=2$ [/mm]      Kürzen
[mm] $\wurzel{\bruch{4(x-3)}{9}}=2$ [/mm]       Quadrieren (Achtung! Keine Äquivalenzumformung)
[mm] $\bruch{4(x-3)}{9}=4$ [/mm]
$4(x-3)=36$
$x-3=9$
$x=12$

Jetzt noch die Probe machen, denn wenn du "unterwegs" quadrierst, dann können sich Scheinlösungen dazumogeln.

Gruß Glie

>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
        
Bezug
Bestimmung der Lösungsmenge: Antwort
Status: (Antwort) fertig Status 
Datum: 07:40 Do 10.10.2013
Autor: fred97


> [mm](\wurzel{4x^2-36})/(\wurzel{9x+27})=2[/mm]
>  Hey, ich sitze hier grade in der Vorbereitung in Mathe und
> habe irgendwie einen Blackout.
>  Ich habe die Gleichung so weit umgeformt, sodass nun
> steht:
>  [mm]4x^2-36=2*\wurzel{9x+27}=\wurzel{4*9x+4*27}[/mm]

Das ist doch nicht richtig ! Wo ist denn die Wurzel auf der linken Seite geblieben ??

FRED

>  Mit pq-Formel dann aufgelöst und wir haben L={12}
>  Ist eigentlich ganz toll, das Problem ist aber, dass ich
> das ganze ohne TR leicht ausrechnen können muss. Und da
> scheint mir [mm]\wurzel{4,5^2+36}[/mm] irgendwie zu umständlich.
> Ich bräuchte einen ganz fixen Denkanstoß wie man das wohl
> wesentlich einfacher auflösen kann.
>  Wäre dankbar für jede Hilfe und die Auflösung meiner
> Blockade :o)
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]