www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesBestimmung der Mächtigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Sonstiges" - Bestimmung der Mächtigkeit
Bestimmung der Mächtigkeit < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmung der Mächtigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:38 Fr 11.04.2014
Autor: X3nion

Aufgabe
Sei n [mm] \in \IN. [/mm] Man bestimme die Anzahl aller Tripel [mm] (k_{1}, k_{2}, k_{3}) \in \IN^{3} [/mm] mit [mm] k_{1} [/mm] + [mm] k_{2} [/mm] + [mm] k_{3} [/mm] = n.

Einen wunderschönen guten Abend zusammen!

Ich habe eine Frage zu folgender Aufgabe. Im Endeffekt bestimme ich ja nichts anderes als die Mächtigkeit der Menge M bestehend aus den Tripeln [mm] (k_{1}, k_{2}, k_{3}) [/mm] , sodass [mm] k_{1} [/mm] + [mm] k_{2} [/mm] + [mm] k_{3} [/mm] = n.

Ist n=0:  [mm] M_{0} [/mm] = [mm] \{ (0,0,0) \} [/mm]  => [mm] |M_{0}| [/mm] = 1

Ist n=1: [mm] M_{1} [/mm] = [mm] \{ (1,0,0) , (0,1,0), (0,0,1) \} [/mm] => [mm] |M_{1}| [/mm] = 3

Ist n=2: [mm] M_{2} [/mm] = [mm] \{ (1,1,0), (1,0,1), (0,1,1), (2,0,0), (0,2,0), (0,0,2) \} [/mm] => [mm] |M_{2}| [/mm] = 6

Ist n=3: [mm] M_{3}= \{ (3,0,0) , (0,3,0), (0,0,3), (2,1,0), (2,0,1), (1,2,0), (1,0,2), (0,1,2), (0,2,1), (1,1,1) \} [/mm] => [mm] |M_{3}| [/mm] = 10

Ist n=4: [mm] |M_{4}| [/mm] = 15

... Insgesamt komme ich auf die Vermutung, dass sich die Differenz zwischen den Mächtigkeiten immer um 1 erhöht, also:
[mm] |M_{1}| [/mm] - [mm] |M_{0}| [/mm] = 2
[mm] |M_{2}| [/mm] - [mm] |M_{1}| [/mm] = 3
[mm] |M_{3}| [/mm] - [mm] |M_{2}| [/mm] = 4
[mm] |M_{4}| [/mm] - [mm] |M_{3}| [/mm] = 5

Und insgesamt komme ich somit auf folgende Formel zur Berechnung der Mächtigkeit: [mm] \summe_{k=0}^{n} [/mm] (k+1)  bzw. explizit bestimmt: [mm] \frac{(n+1)(n+2)}{2} [/mm]

Die Frage aller Fragen ist nun jedoch: Wie beweise ich, dass die Summenformel bzw. die explizite Formel gilt? Ich habe ja nur den Verdacht dass sich die Differenz der Mächtigkeiten jeweils um 1 erhöht!

Viele Grüße und auf Antwort hoffend,
Christian! ;-)

        
Bezug
Bestimmung der Mächtigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 19:55 Fr 11.04.2014
Autor: hippias

Man koennte versuchen einen Zusammenhang zwischen den Tripeln aus [mm] $M_{n}$ [/mm] und [mm] $M_{n+1}$ [/mm] herzustellen, der eine Funktion [mm] $f:M_{n}\to M_{n+1}$ [/mm] liefert. Wenn sie Injektiv ist, wuesste man schon einmal, dass [mm] $|M_{n+1}|= |M_{n}|+x_{n}$ [/mm] ist, wobei [mm] $x_{n}:= |M_{n+1}\backslash f(M_{n})|$ [/mm] ist (der Rest). Wenn man diesen Rest noch auszaehlen kann, dann waere man fertig.

Mein Tip: Zerlege [mm] $M_{n+1}$ [/mm] in die Tupel, deren erster Eintrag $=0$ ist und die, deren erster Eintrag $>0$ ist. Die ersteren Tupel sollten sich gut durchzaehlen lassen. Ueberlege Dir dann, dass die Menge der anderen Tupel gleichmaechtig zu [mm] $M_{n}$ [/mm] ist.

Bezug
        
Bezug
Bestimmung der Mächtigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 20:18 Fr 11.04.2014
Autor: abakus


> Sei n [mm]\in \IN.[/mm] Man bestimme die Anzahl aller Tripel [mm](k_{1}, k_{2}, k_{3}) \in \IN^{3}[/mm]
> mit [mm]k_{1}[/mm] + [mm]k_{2}[/mm] + [mm]k_{3}[/mm] = n.
> Einen wunderschönen guten Abend zusammen!

>

> Ich habe eine Frage zu folgender Aufgabe. Im Endeffekt
> bestimme ich ja nichts anderes als die Mächtigkeit der
> Menge M bestehend aus den Tripeln [mm](k_{1}, k_{2}, k_{3})[/mm] ,
> sodass [mm]k_{1}[/mm] + [mm]k_{2}[/mm] + [mm]k_{3}[/mm] = n.

>

> Ist n=0: [mm]M_{0}[/mm] = [mm]\{ (0,0,0) \}[/mm] => [mm]|M_{0}|[/mm] = 1

>

> Ist n=1: [mm]M_{1}[/mm] = [mm]\{ (1,0,0) , (0,1,0), (0,0,1) \}[/mm] =>
> [mm]|M_{1}|[/mm] = 3

>

> Ist n=2: [mm]M_{2}[/mm] = [mm]\{ (1,1,0), (1,0,1), (0,1,1), (2,0,0), (0,2,0), (0,0,2) \}[/mm]
> => [mm]|M_{2}|[/mm] = 6

>

> Ist n=3: [mm]M_{3}= \{ (3,0,0) , (0,3,0), (0,0,3), (2,1,0), (2,0,1), (1,2,0), (1,0,2), (0,1,2), (0,2,1), (1,1,1) \}[/mm]
> => [mm]|M_{3}|[/mm] = 10

>

> Ist n=4: [mm]|M_{4}|[/mm] = 15

>

> ... Insgesamt komme ich auf die Vermutung, dass sich die
> Differenz zwischen den Mächtigkeiten immer um 1 erhöht,
> also:
> [mm]|M_{1}|[/mm] - [mm]|M_{0}|[/mm] = 2
> [mm]|M_{2}|[/mm] - [mm]|M_{1}|[/mm] = 3
> [mm]|M_{3}|[/mm] - [mm]|M_{2}|[/mm] = 4
> [mm]|M_{4}|[/mm] - [mm]|M_{3}|[/mm] = 5

>

> Und insgesamt komme ich somit auf folgende Formel zur
> Berechnung der Mächtigkeit: [mm]\summe_{k=0}^{n}[/mm] (k+1) bzw.
> explizit bestimmt: [mm]\frac{(n+1)(n+2)}{2}[/mm]

>

> Die Frage aller Fragen ist nun jedoch: Wie beweise ich,
> dass die Summenformel bzw. die explizite Formel gilt? Ich
> habe ja nur den Verdacht dass sich die Differenz der
> Mächtigkeiten jeweils um 1 erhöht!

>

> Viele Grüße und auf Antwort hoffend,
> Christian! ;-)

Hallo,
du kommst sicher schnell zum Ziel, wenn du keine Fallunterscheidung über mögliche n machst, sondern für ein beliebiges festes n über die möglichen Werte von [mm] $k_1$. [/mm]
Für [mm] $k_1=n$ [/mm] gibt es nur eine Möglichkeit (die beiden anderen Summanden sind 0).
 Für [mm] $k_1=n-1$ [/mm] gibt es nur zwei Möglichkeit (die beiden anderen Summanden sind 0+1 oder 1+0). 
  Für [mm] $k_1=n-2$ [/mm] gibt es nur drei Möglichkeit (die beiden anderen Summanden sind 0+2 oder 1+1 oder 2+0).  
...
  Für [mm] $k_1=0 [/mm] $ gibt es (n+1) Möglichkeit (die beiden anderen Summanden sind 0+n, 1+(n-1), 2+(n-2),...,n+0).  
Also gibt es insgesamt 1+2+3+...+(n+1) Möglichkeiten.
(Siehe "Gaußsche Summenformel" 
und "Dreieckszahlen).
Gruß Abakus

Bezug
        
Bezug
Bestimmung der Mächtigkeit: Mach so
Status: (Antwort) fertig Status 
Datum: 22:42 Fr 11.04.2014
Autor: HJKweseleit

Die folgende Idee funktioniert mit beliebig vielen Summanden, deren Anzahl fest vorgegeben ist:

Bilde eine Kette aus n+k-1 Kästchen für die Zahl n und die k Summanden, hier also n+2.

Suche dir k-1 (also hier 2) von diesen Kästchen aus und schreibe ein Kreuz hinein. n Kästchen bleiben frei.
Die freien Kästchen links vom ersten Kreuz bilden den ersten Summanden, die zwischen dem ersten und zweiten Kreuz den zweiten, die zwischen dem zweiten und dritten den dritten Summanden usw. und die hinter dem letzten Kreuz den letzten Summanden. Folgen zwei Kreuze direkt aufeinander, so ist der Summand zwischen ihnen 0.

Du bekommst nun die Anzahl aller möglichen Summanden, indem du alle Möglichkeiten berechnest, wie du aus n+k-1 Kästchen k-1 für die Kreuze aussuchen kannst. Dafür gibt es genau [mm] \vektor{n+k-1 \\ k-1} [/mm] Möglichkeiten.

In deinem Beispiel mit k=3 sind das [mm] \vektor{n+2 \\ 2}= \bruch{(n+2)!}{n!*2!}=\bruch{(n+2)(n+1)}{2} [/mm]


Beispiel: [mm] \Box\Box\Box\Box X\Box\Box X\Box\Box\Box [/mm] entspricht 4+2+3=9
[mm] \Box\Box\Box\Box X\Box\Box\Box\Box\Box [/mm] X entspricht 4+5+0=9

Bezug
                
Bezug
Bestimmung der Mächtigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:03 Do 17.04.2014
Autor: X3nion

Hallo Leute!
Vielen vielen Dank euch für eure Bemühungen, ich habe alles verstaneden und es ist mir voll und ganz ersichtlich! ;-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]