Bestimmung der Wahrscheinlichk < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Ich habe untenstehendes Problem zu lösen und würde mich über gute Hinweise oder Literaturverweise freuen.
Danke im voraus. |
Mein Problem ist die Entwicklung bzw. Umformung von
Wahrscheinlichkeiten vom Maximum bzw. Supremum von
Zufallsvariablen. Vielleicht tritt dieses Problem auch beim
Minimum und Infimum auf.
Es ist zu zeigen: [mm] sup_n |X_n|\rightarrow [/mm] 0 in
Wahrscheinlichkeit.
Also formal: [mm] \lim_{n\to\infty}\mathbb{P}[sup_n |X_n|>\varepsilon]=0.
[/mm]
Mein Ansatz zum Maximum ist der folgende:
[mm] \lim_{n\to\infty}\mathbb{P}[\max_n |X_n|>\varepsilon]\Leftrightarrow \lim_{n\to\infty}\mathbb{P}[\bigcup_n\{
|X_n|>\varepsilon\}]\\
[/mm]
[mm] \lim_{n\to\infty}\mathbb{P}[\max_n |X_n|<\varepsilon]\Leftrightarrow \lim_{n\to\infty}\mathbb{P}[\bigcap_n\{
|X_n|<\varepsilon\}]\\
[/mm]
Grund hierfür ist die Definition von Vereinigung bzw.
Durchschnitt und die mengentheoretische Definition von < und >.
Forme ich das Supremum nun ebenso um, oder gibt es einen ganz
anderen Weg oder ist sogar mein Ansatz falsch.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:52 Fr 05.05.2006 | Autor: | DirkG |
[mm] $\left[ \sup\limits_n |X_n| > \varepsilon \right] [/mm] = [mm] \bigcup\limits_n \left[ |X_n| > \varepsilon \right]$ [/mm] und auch das Komplement [mm] $\left[ \sup\limits_n |X_n| \leq \varepsilon \right] [/mm] = [mm] \bigcap\limits_n \left[ |X_n| \leq \varepsilon \right]$ [/mm] sind auch für abzählbare Vereinigungen bzw. Durchschnitte richtig!
Aber aufpassen: [mm] $\left[ \sup\limits_n |X_n| \geq \varepsilon \right] \stackrel{?}{=} \bigcup\limits_n \left[ |X_n| \geq \varepsilon \right]$ [/mm] bzw. [mm] $\left[ \sup\limits_n |X_n| < \varepsilon \right] \stackrel{?}{=} \bigcap\limits_n \left[ |X_n| < \varepsilon \right]$ [/mm] sind i.a. falsch:
Betrachte dazu nur mal eine Folge [mm] $(X_n)$ [/mm] und ein [mm] $\omega_0$ [/mm] mit [mm] $X_n(\omega_0)=\varepsilon-\frac{1}{n}$:
[/mm]
Dann gilt [mm] $\omega_0\in\left[ \sup\limits_n |X_n| \geq \varepsilon \right]$, [/mm] aber [mm] $\omega_0\not\in\left[ |X_n| \geq \varepsilon \right]$ [/mm] für alle $n$.
|
|
|
|
|
Danke für den Hinweis. Ich bin froh, dass ich nicht ganz falsch lag.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:48 Fr 05.05.2006 | Autor: | DirkG |
Bei Betrachtung endlicher Vereinigungen bzw. Durchschnitte hast du überhaupt nicht falsch gelegen.
|
|
|
|