www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenBestimmung des Kerns
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Abbildungen" - Bestimmung des Kerns
Bestimmung des Kerns < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmung des Kerns: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:37 Mi 27.01.2010
Autor: Krischy

Aufgabe
Wir betrachten die lineare Abbildung
[mm] \mu [/mm] : [mm] \IR^3 [/mm] -> [mm] \IR^2 [/mm] mit [mm] \mu \vektor{x1 \\ x2 \\ x3} [/mm] = [mm] \pmat{ x1 - x2 \\ x2 - x3 } [/mm]

Bestimmen sie eine Basis des Kerns [mm] ker(\mu) [/mm] dieser linearen Abbildung. Wie groß ist die Dimension des Kerns?


Hallo ich habe schon überall nachgeschaut, in meinen Mathe Büchern und im Internet, finde aber keine genaue Erklärung wie ich den Kern berechnen kann. Nirgendwo sind beispiele aufgeführt, ich hoffe mir kann hier jemand helfen. Eine Allgemeine Formel würde mir wohl schon helfen. Vielen dank

( Ich habe diese Frage in keinem anderen Forum gestellt)

        
Bezug
Bestimmung des Kerns: Antwort
Status: (Antwort) fertig Status 
Datum: 14:43 Mi 27.01.2010
Autor: fred97

Der Kern besteht aus allen Vektoren [mm] \vektor{x_1 \\ x_2 \\ x_3} [/mm] mit der Eigenschaft

              [mm] \mu(\vektor{x_1 \\ x_2 \\ x_3})= \vektor{0 \\ 0 \\ 0} [/mm]

Bestimme also die Lösung des Gleichungssystems

              [mm] $x_1-x_2 [/mm] = 0$

              [mm] $x_2-x_3 [/mm] = 0$


FRED

Bezug
                
Bezug
Bestimmung des Kerns: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:20 Mi 27.01.2010
Autor: Krischy

Okay danke, wenn ich das richtig verstanden habe dann ist x1 = 0, x2 = 0, und x3= o.

wenn ich dann x1 - x2 = o setze und
              x2 - x3 = 0 setze

dann müsste da stehen :

0 - 0 = 0 und
0 - 0 = 0

dann kommt für den Kern [mm] \mu [/mm] 0 raus, oder? und was sagt mir dass dann?

Bezug
                        
Bezug
Bestimmung des Kerns: Antwort
Status: (Antwort) fertig Status 
Datum: 15:25 Mi 27.01.2010
Autor: fred97


> Okay danke, wenn ich das richtig verstanden habe dann ist
> x1 = 0, x2 = 0, und x3= o.
>  
> wenn ich dann x1 - x2 = o setze und
>                x2 - x3 = 0 setze
>  
> dann müsste da stehen :
>  
> 0 - 0 = 0 und
>  0 - 0 = 0
>  

Nein, nein.

Es ist [mm] \vektor{x_1 \\ x_2 \\ x_3} \in Kern(\mu) \gdw $x_1=x_2=x_3$ \gdw [/mm] es ex. eint [mm] \in \IR [/mm] mit:  $ [mm] \vektor{x_1 \\ x_2 \\ x_3}= t*\vektor{1 \\ 1 \\ 1}$ [/mm]

FRED

> dann kommt für den Kern [mm]\mu[/mm] 0 raus, oder? und was sagt mir
> dass dann?


Bezug
                                
Bezug
Bestimmung des Kerns: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:39 Mi 27.01.2010
Autor: Krischy

ich verstehe dass nicht :( aber danke für deine Bemühungen

Bezug
                                        
Bezug
Bestimmung des Kerns: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:42 Mi 27.01.2010
Autor: fred97


> ich verstehe dass nicht :( aber danke für deine
> Bemühungen

Nicht aufgeben. Ist Dir folgendes klar:

              

              $ [mm] x_1-x_2 [/mm] = 0 $

              $ [mm] x_2-x_3 [/mm] = 0 $

    [mm] \gdw [/mm]

               [mm] $x_1=x_2=x_3$ [/mm]


?

FRED

Bezug
                                                
Bezug
Bestimmung des Kerns: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:21 Mi 27.01.2010
Autor: Krischy

Ja dass ist mir jetzt klar wieso x1 = x2 =x3 ist.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]