Bestimmung einer Formel < axiomatisch < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Geben Sie eine verbale Formulierung für die durch folgende Formel ausgedrückte Eigenschaft einer Menge T [mm] \subseteq \IN
[/mm]
[mm] \forall [/mm] n [mm] \in \IN(\forall [/mm] k [mm] \in \IN(k [/mm] < n [mm] \to [/mm] k [mm] \in [/mm] T)) [mm] \to [/mm] n [mm] \in [/mm] T)
Kann man aus dieser Eigenschaft stets auf T = [mm] \IN [/mm] schließen? |
Hallo!
Ich bin mir ein wenig unsicher, ob man auf T = [mm] \IN [/mm] schließen kann, weil nach meiner Interpretation der Formel gibt es für jedes n in den natürlichen Zahlen einen Vorgänger k ... aber 0 ist ja auch in den natürlichen Zahlen, aber dieser besitzt ja keinen Vorgänger ... - oder ist das jetzt nicht zu beachten?
Bitte um Aufklärung und danke für jede Antwort im Voraus.
LG
|
|
|
|
> Geben Sie eine verbale Formulierung für die durch folgende
> Formel ausgedrückte Eigenschaft einer Menge T [mm]\subseteq \IN[/mm]
>
> (*) [mm]\forall n \in \IN(\forall k \in \IN(k < n \to k \in T))\to n \in T)[/mm]
>
> Kann man aus dieser Eigenschaft stets auf [mm]T = \IN[/mm]
> schließen?
> Hallo!
>
> Ich bin mir ein wenig unsicher, ob man auf T = [mm]\IN[/mm]
> schließen kann, weil nach meiner Interpretation der Formel
> gibt es für jedes n in den natürlichen Zahlen einen
> Vorgänger k ... aber 0 ist ja auch in den natürlichen
> Zahlen, aber dieser besitzt ja keinen Vorgänger ... - oder
> ist das jetzt nicht zu beachten?
Für $n=0$ folgt aus der fraglichen Allaussage, dass [mm] $0\in [/mm] T$ gelten muss, denn die Voraussetzung [mm] $\foralll k\in \IN (k<0\rightarrow k\in [/mm] T)$ gilt trivialerweise: weil es kein [mm] $k\in \IN$ [/mm] mit $k<0$ gibt.
Aus der Aussage (*) für sich alleine folgt nur [mm] $\IN\subseteq [/mm] T$, da aber [mm] $T\subseteq \IN$ [/mm] vorausgesetzt wurde, gilt sogar [mm] $\IN=T$.
[/mm]
Du könntest versuchen dies zu beweisen, indem Du aus der Aussage (*) die Voraussetzungen für einen Beweis von [mm] $\IN\subseteq [/mm] T$ mittels vollständiger Induktion beweist. [mm] $0\in [/mm] T$ folgt, wie gesagt, indem man die Allaussage auf $n=0$ spezialisiert. Nun müsstest Du noch zeigen, dass für alle [mm] $n\in \IN$ [/mm] aus [mm] $n\in [/mm] T$ auch [mm] $n+1\in [/mm] T$ folgt. Das Problem dabei ist, dass Du, zwecks Anwendung von (*), nun müsstest benutzen können, dass [mm] $k\in [/mm] T$ für alle $k<n+1$ gilt. Beim Beweis des Schlusses von [mm] $n\in [/mm] T$ auf [mm] $n+1\in [/mm] T$ ist uns aber streng genommen nur der Fall $k=n$, d.h [mm] $n\in [/mm] T$, als direkt voraussetzbar gegeben.
Eine andere Möglichkeit wäre ein indirekter Beweis: Angenommen es wäre [mm] $T\subsetneq \IN$, [/mm] dann gäbe es(?) ein kleinstes [mm] $n_0\in \IN$ [/mm] mit [mm] $n_0\notin [/mm] T$. Daraus folgt aber ein Widerspruch zu (*): denn dann würde für alle [mm] $\forall k\in\IN$ [/mm] mit $k< [mm] n_0$ [/mm] auch [mm] $k\in [/mm] T$, also nach (*) notwendigerweise [mm] $n_0\in [/mm] T$ folgen, im Widerspruch zu unserer Wahl von [mm] $n_0$.
[/mm]
|
|
|
|