www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Bestimmung v. Parabelgleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Mathe Klassen 8-10" - Bestimmung v. Parabelgleichung
Bestimmung v. Parabelgleichung < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmung v. Parabelgleichung: Parabelgleichungen
Status: (Frage) beantwortet Status 
Datum: 13:03 Sa 02.11.2013
Autor: Asura

Aufgabe
Die Parabel y = 1/2 * [mm] x^{2} [/mm] - 4x + 10 wird im Koordinatensystem um 2 Einheiten nach rechts und um 3 Einheiten nach unten verschoben. Anschließend wird sie um ihren Scheitelpunkt um 180 Grad gedreht und so gestreckt, dass sie durch den Punkt P(4/-9) verläuft. Wie lautet die Gleichung der entstandenen Parabel in Normalform?

Guten Tag,
und zwar komme ich bei der oben gestellten Aufgabe nicht weiter.
Es geht um darum, wie ich die Gleichung ermitteln kann, wenn ich den Punkt nun gegeben habe.
Ich habe bis jetzt das so gerechnet:

[]Zum Bild auf: "http://epvpimg.com/wMyHg"

Es wäre super, wenn Sie mir die nächsten Schritte erklären könnten.

MfG
Asura

        
Bezug
Bestimmung v. Parabelgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:16 Sa 02.11.2013
Autor: M.Rex

Hallo

> Die Parabel y = 1/2 * [mm]x^{2}[/mm] - 4x + 10 wird im
> Koordinatensystem um 2 Einheiten nach rechts und um 3
> Einheiten nach unten verschoben. Anschließend wird sie um
> ihren Scheitelpunkt um 180 Grad gedreht und so gestreckt,
> dass sie durch den Punkt P(4/-9) verläuft.
> Wie lautet die
> Gleichung der entstandenen Parabel in Normalform?
> Guten Tag,
> und zwar komme ich bei der oben gestellten Aufgabe nicht
> weiter.
> Es geht um darum, wie ich die Gleichung ermitteln kann,
> wenn ich den Punkt nun gegeben habe.
> Ich habe bis jetzt das so gerechnet:

>

> []Zum Bild auf: "http://epvpimg.com/wMyHg"

Die Umformung von

[mm] f(x)=\frac{1}{2}x^{2}-4x+10 [/mm] zu [mm] f(x)=\frac{1}{2}(x-4)^{2}+2 [/mm] ist korrekt, damit dann auch [mm] S_{f}(4|2) [/mm]

>

> Es wäre super, wenn Sie mir die nächsten Schritte
> erklären könnten.

Die neue Parabel hat also den Scheitel S(4|2) und einen unbekannten Streckfaktor a, also hast du:
[mm] g(x)=a(x-4)^{2}+2 [/mm]

Nun verschieben wir [mm] (x-4)^{2}+2 [/mm] weiter:
[mm] a(x-4)^{2}+2 [/mm]
um drei Einheiten nach unten geschoben:
[mm] \left(a(x-4)^{2}+2\right)-3 [/mm]
[mm] =a(x-4)^{2}-1 [/mm]
Nun 2 Einheiten nach rechts
[mm] a((x-2)-4)^{2}-1 [/mm]
[mm] =a(x-6)^{2}-1 [/mm]
Nun am Scheitel um 180° Spiegeln
[mm] =-a(x-6)^{2}-1 [/mm]
Nun soll sie wiederum gestreckt/gestaucht werden, so dass P(4|-9) auf g liegt, also muss gelten

g(4)=-9, also [mm] -a\cdot(4-6)^{2}-1=-9 [/mm]

Daraus kannst du nun a bestimmen, und damit dann die neue Parabel [mm] g(x)=-a(x-6)^{2}-1 [/mm]

In der Tat gilt aber:
[mm] -a\cdot(4-6)^{2}-1=-9 [/mm]
[mm] \Leftrigtarrow-a\cdot(-2)^{2}=-8 [/mm]
[mm] \Leftrigtarrow4a=8 [/mm]
[mm] \Leftrigtarrow2=a [/mm]

Also hast du

[mm] g(x)=-2(x-6)^{2}-1 [/mm]

Wenn du das in die Normalform umwandeln willst, musst du nur die binomische Formel lösen, und den Term dann zusammenfassen.

> MfG
> Asura

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]