Bestimmung von Parametern uä < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 12:47 Di 14.02.2006 | Autor: | Lena1221 |
Aufgabe | An einem Sommertag in Oldenburg wurden um 14.00 Uhr als höchste Temeratur 30 °C gemessen, am frühen morgen dieses Tages betrug die tiefste Temperatur 16 °C. Es wir angenommen, dass die Funktion f(t) mit f(t)=a*sin ( [mm] \bruch{1}{12} \pi [/mm] t +e)+d beschreibe die Temperatur an diesem Tag in Abhängigkeit von der Zeit t (in stunden) nach Mitternacht.
a) Bestimmen sie a,e und d
b) Um wievile Uhr ist die Temperaturänderung maximal? |
Hallo
Also ich GLAUBE das ich bei der a) das Gauß-verfahren machen muss aber welche Bedingungen --> ich steh irgendwie voll aufm Schlauch!
Danke
Ich habe die Frage sonst nirgends gestellt
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:28 Di 14.02.2006 | Autor: | statler |
> An einem Sommertag in Oldenburg wurden um 14.00 Uhr als
> höchste Temeratur 30 °C gemessen, am frühen morgen dieses
> Tages betrug die tiefste Temperatur 16 °C. Es wir
> angenommen, dass die Funktion f(t) mit f(t)=a*sin (
> [mm]\bruch{1}{12} \pi[/mm] t +e)+d beschreibe die Temperatur an
> diesem Tag in Abhängigkeit von der Zeit t (in stunden) nach
> Mitternacht.
> a) Bestimmen sie a,e und d
> b) Um wievile Uhr ist die Temperaturänderung maximal?
> Hallo
>
> Also ich GLAUBE das ich bei der a) das Gauß-verfahren
> machen muss aber welche Bedingungen --> ich steh irgendwie
> voll aufm Schlauch!
Auch hallo!
Der Temperaturverlauf soll durch eine modifizierte Sinus-Fkt. beschrieben werden. Weil der Sinus zwischen -1 und +1 schwankt und weil wir hier eine Schwankung zwischen 30 und 16 haben wollen, muß a schon mal = 7 sein. d verschiebt dann die Funktion in y-Richtung, also muß ich 23 addieren, also ist d = 23. e sorgt für die Verschiebung in x-Richtung. Beim normalen Sinus liegt das Max. bei x = [mm] \bruch{\pi}{2}, [/mm] hier soll es bei t = 14 liegen. Also muß ich (d. h. du) die Gleichung
[mm] \bruch{14}{12}*\pi [/mm] + e = [mm] \bruch{\pi}{2}
[/mm]
lösen, das ergibt e = [mm] -\bruch{2}{3}*\pi [/mm] (hoffentlich)
Für b) muß man gucken, wo der Sinus am stärksten schwankt (in der Mitte zwischen Min. und Max.) oder mit der Ableitung werkeln.
Ich wundere mich, daß du das schon in der 11. Kl. machst!
Gruß aus HH-Harburg
Dieter
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 13:52 Di 14.02.2006 | Autor: | Lena1221 |
Halli hallo
Aber wie komm ich den auf diese a= 7 hab das irgendwie noch nicht verstanden. und auf d?
Bin nicht mehr in der 11. bin jetzt in der 12. , aber ich kanns trotzdem nicht so gut, da unser Lehrer nicht richtig erklärt weil er alles schnell mal durchgenommen haben will. Und das alles nur wegen dem neuen Zentralabi in Hessen .. Ich glaub kein Lehrer packt den Stoff aber sie müssen ja weil sie nicht wissen was drankommt!
Danke schonmal
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:26 Di 14.02.2006 | Autor: | statler |
Da bin ich wieder ...
>
> Aber wie komm ich den auf diese a= 7 hab das irgendwie noch
> nicht verstanden. und auf d?
Das a bestimmt beim Sinus die Amplitude, die ist beim Standard-Sinus
y = sin x
gleich 1. Die Differenz zwischen Max. und Min. ist dann gleich 2, nämich das Doppelte der Amplitude. Kannst du die Funktion übrigens zeichnen? Das hilft ungemein! y = a*sin x hat dann die Amplitude a (genauer |a|), aber bei uns soll a positiv sein, also a = |a|. Wenn a groß ist, z. B. 7, schlägt der Sinus viel weiter aus. Der Graph von 7*sin x schwankt zwischen +7 und -7. Die Differenz zw. Max. und Min. ist dann 14 wie bei unserem Temperaturverlauf. Aber es soll Max. = 30 und Min. = 16 sein, also muß ich das Ding noch um 23 nach oben in die positive y-Richtung verschieben. Das macht d!
Mach dir bittebitte ein paar Zeichnungen dazu.
Jetzt kommt der Faktor [mm] \bruch{\pi}{12} [/mm] beim t ins Geschäft. Der zieht das Gebilde in t-Richtung, also in der Horizontalen, auseinander. Der Sinus hat die Nullstellen bei 0, [mm] \pm\pi, \pm2*\pi, [/mm] ... Wenn der Faktor dazukommt, sind die Nullstellen bei 0, [mm] \pm12, \pm24 [/mm] ...Die Minima und Maxima liegen genau in der Mitte dazwischen; sie sollen bei 2 (Min.), 14 (Max.) usw. liegen, und genau das regelt das e.
Jetzt müßtest du mal selbst wieder ein bißchen Arbeit in unser Geschäft stecken.
> Bin nicht mehr in der 11. bin jetzt in der 12. , aber ich
> kanns trotzdem nicht so gut, da unser Lehrer nicht richtig
> erklärt weil er alles schnell mal durchgenommen haben will.
> Und das alles nur wegen dem neuen Zentralabi in Hessen ..
> Ich glaub kein Lehrer packt den Stoff aber sie müssen ja
> weil sie nicht wissen was drankommt!
Das ist in Hamburg dieselbe Sch...e, aber Jammern hilft nicht.
Gruß aus HH-Harburg (herrliches Wetter hier)
Dieter
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:15 Di 14.02.2006 | Autor: | dormant |
Hi Lena!
Es ist kaum möglich was Neues aszudenken bei Textaufgaben, also machen wirs nach dem gut bekannten Rezept: du hast 3 Unbekannte, also musst du irgendwie 3 von einander unabhängige Gleichungen finden.
Was hast man denn:
1. f(14)=30;
2. f'(14)=0;
3. f''(14)<0;
4. [mm] f(t_{0})=16;
[/mm]
5. [mm] f'(t_{0})=0=f'(14);
[/mm]
6. [mm] f''(t_{0})>0;
[/mm]
Nun kann man aus 2, 3, 5 und 6 zwei Gleichungen für a und e gewinnen, dann setzt man das Ergebnis in 1 ein und erählt d. Wozu 4 gut ist, seh ich auf dem ersten Blick nicht.
Gruß,
dormant
|
|
|
|