www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenBestimmung von e
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Exp- und Log-Funktionen" - Bestimmung von e
Bestimmung von e < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmung von e: Fragestellung
Status: (Frage) beantwortet Status 
Datum: 16:55 Sa 12.12.2009
Autor: nachprueflerin

Aufgabe
Bestimme die Küpper'sche Zahl, wenn [mm] f(x)=k^x [/mm] und f'(x)= [mm] 2*k^x [/mm]

Hallo alle zusammen :)

Also, leider habe ich in der Mathestunde, in welcher die Herleitung der eulerschen Zahl besprochen wurde, gefehlt...

Laut Mathe-Buch irgendwas mit der Formel lim n>unendlich [mm] (1+1/n)^n [/mm]

pff! ich versteh's nich!

und unser Mathe Lehrer, Herr Küpper (deswegen küppersche Zahl) will jetzt, dass wir diese  bestimmen.

Was muss ich jetzt an der Formel verändern & warum?

Bitte, hiiiilfe!

        
Bezug
Bestimmung von e: Antwort
Status: (Antwort) fertig Status 
Datum: 17:11 Sa 12.12.2009
Autor: Al-Chwarizmi


> Bestimme die Küpper'sche Zahl, wenn [mm]f(x)=k^x[/mm] und f'(x)=
> [mm]2*k^x[/mm]
>  Hallo alle zusammen :)
>  
> Also, leider habe ich in der Mathestunde, in welcher die
> Herleitung der eulerschen Zahl besprochen wurde,
> gefehlt...
>  
> Laut Mathe-Buch irgendwas mit der Formel lim n>unendlich
> [mm](1+1/n)^n[/mm]
>  
> pff! ich versteh's nich!
>  
> und unser Mathe Lehrer, Herr Küpper (deswegen küppersche
> Zahl) will jetzt, dass wir diese  bestimmen.
>  
> Was muss ich jetzt an der Formel verändern & warum?
>  
> Bitte, hiiiilfe!


Hallo,

obwohl du bei der Herleitung von e nicht dabei
warst, hast du wohl aber mitbekommen, dass für
die Exponentialfunktion mit der Basis e gilt:

        [mm] $\left(e^x\right)'\ [/mm] =\ [mm] e^x$ [/mm]

Setze deshalb [mm] k:=e^c [/mm]  (mit einer noch zu bestim-
menden Zahl c). Dann ist  

        $\ f(x)\ =\ [mm] k^x\ [/mm] =\ [mm] \left(e^c\right)^x\ [/mm] =\ [mm] e^{c*x}$ [/mm]

Bilde nun hier die Ableitung und setze dann in die
Gleichung für $\ f'(x)$  ein !


LG     Al-Chw.



Bezug
                
Bezug
Bestimmung von e: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:26 Sa 12.12.2009
Autor: nachprueflerin

was hat das denn jetzt mit dem limes zu tun??

und was muss ich da einsetzen??

ich hab' das ganze system nicht verstanden, sorry...

Bezug
                        
Bezug
Bestimmung von e: Antwort
Status: (Antwort) fertig Status 
Datum: 17:41 Sa 12.12.2009
Autor: Al-Chwarizmi


> was hat das denn jetzt mit dem limes zu tun??
>  
> und was muss ich da einsetzen??
>  
> ich hab' das ganze system nicht verstanden, sorry...


Hallo nachprueflerin,

leider weiß ich nicht, auf welche Weise Herr K. die
Zahl e eingeführt hat - es gibt dazu verschiedene
Zugangswege. Meine Vermutung ist nur, dass die
vorliegende Aufgabe nicht unbedingt so gedacht
ist, dass man dabei die in der Herleitung von e
auch vorkommenden Grenzwertüberlegungen
gewissermaßen auf andere Weise wiederholen muss,
sondern dass man quasi die dabei geerntete "Frucht",
nämlich die Gleichung [mm] \left(e^x\right)'=e^x [/mm] , genießen und anwen-
den darf. Ich nehme einmal an, dass du eine Mit-
schrift der Herleitung von e besitzt und dort wenig-
stens nachschlauen kannst, ob dort die Gleichung
[mm] \left(e^x\right)'=e^x [/mm]  vorkommt. In diesem Fall kannst du ruhig
meiner Anleitung folgen (dabei die Kettenregel nicht
vergessen !) und die Konstanten c sowie k leicht
berechnen.
Die eigentliche Herleitung von e müsstest du dann
separat einmal durchackern.


LG    Al-Chw.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]