www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesBestimmungsgleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Sonstiges" - Bestimmungsgleichung
Bestimmungsgleichung < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmungsgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:42 Mi 28.04.2010
Autor: Ice-Man

Gegeben war:

[mm] \bruch{(x-2)^{2}}{lnx}=2 [/mm]

Jetzt sollt ich angeben, wieviel Lösungen die Gleichung besitz.
Nur wie soll ich an die Aufgabe rangehen?
Ich habe nicht so wirklich ne Idee...
Denn einfach so nach "x" auflösen, ist ja nicht so ohne weiteres möglich, oder ;)?

        
Bezug
Bestimmungsgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:03 Mi 28.04.2010
Autor: angela.h.b.


> Gegeben war:
>  
> [mm]\bruch{(x-2)^{2}}{lnx}=2[/mm]
>  
> Jetzt sollt ich angeben, wieviel Lösungen die Gleichung
> besitz.

Hallo,

>  Nur wie soll ich an die Aufgabe rangehen?

möglichst kreativ...

>  Ich habe nicht so wirklich ne Idee...
>  Denn einfach so nach "x" auflösen, ist ja nicht so ohne
> weiteres möglich, oder ;)?

Genau.
Das ist sicher das, was "man" spontan als erstes versuchen würde, und man erleidet schnell Schiffbruch.

Ich würd' mal versuchen, [mm] g(x):=\bruch{(x-2)^{2}}{lnx}-2 [/mm] auf Nullstellen zu untersuchen, und zwar nicht durch Lösen der Gleichung [mm] \bruch{(x-2)^{2}}{lnx}=2, [/mm] sondern mithilfe des ZWS und weiteren Überlegungen.
Sicher ist es sinnvoll, zunächst einmal den Definitionsbereich festzustellen.

Vielleicht ist es unsportlich, aber ein Plot der Funktion ist sicher hilfreich. Wenn man weiß, was man zeigen möchte, geht's meist besser.

Gruß v. Angela




Bezug
                
Bezug
Bestimmungsgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:16 Mi 28.04.2010
Autor: Ice-Man

Was ist das "ZWS"?? ;)

Also der Nenner, kann ja nur Werte annehmen >0.

Bezug
                        
Bezug
Bestimmungsgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:20 Mi 28.04.2010
Autor: angela.h.b.


> Was ist das "ZWS"?? ;)

Hallo,

der Zwischenwertsatz.

>  
> Also der Nenner, kann ja nur Werte annehmen >0.

???

Gruß v. Angela


Bezug
                                
Bezug
Bestimmungsgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:21 Mi 28.04.2010
Autor: Ice-Man

Na ln von 0 bzw. negativen Zahlen, geht ja nicht, oder?

Bezug
                                        
Bezug
Bestimmungsgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:31 Mi 28.04.2010
Autor: fred97


> Na ln von 0 bzw. negativen Zahlen, geht ja nicht, oder?

Richtig, geht nicht

FRED

Bezug
                                
Bezug
Bestimmungsgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:34 Mi 28.04.2010
Autor: Ice-Man

Was kann ich unter Zwischenwertsatz verstehen?


Bezug
                                        
Bezug
Bestimmungsgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:36 Mi 28.04.2010
Autor: fred97

http://de.wikipedia.org/wiki/Zwischenwertsatz

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]