www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisBeträge b. Int. von $\frac1x$
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Komplexe Analysis" - Beträge b. Int. von $\frac1x$
Beträge b. Int. von $\frac1x$ < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beträge b. Int. von $\frac1x$: ..schulpraktischer Zweck?
Status: (Frage) beantwortet Status 
Datum: 11:55 Sa 20.04.2013
Autor: Riesenradfahrrad

Beitrag nach Bearbeitung:

Hallo!

wahrscheinlich habt schon oft gehört oder selber gepredigt:
[mm] $\int\frac1x\mathrm dx=|\ln [/mm] x|+c$ - vergiss bloss nicht den Betrag!!!

Nun gebe ich zu diesem "Vergessen" mal meinen Gedanken:

wir betrachten die [mm] $\ln$-Funktion [/mm] mit komplexem Argument:
[mm] $$\ln(z) [/mm] = [mm] \ln(|z|e^{i\varphi})=\ln(|z|)+\ln(e^{i\varphi})=\ln(|z|)+ i\varphi$$ [/mm]  
[mm] $\varphi$ [/mm] ist eine reelle Zahl, also ist [mm] $i\varphi$ [/mm] eine imaginäre Zahl, und es gilt:
[mm] $$\ln(|z|) [/mm] + c = [mm] \ln(z),\quad\text{wobei $c$ eine imaginäre Zahl ist}.$$ [/mm]
Wählen wir nun
[mm] $$d=i\varphi+r,\quad r\in\mathbb [/mm] R$$
in
[mm] $$\int \frac1z\mathrm dz=\ln(|z|) +d\quad d\in\mathbb [/mm] C$$
so ergibt sich doch völlig legitim
[mm] $$\int \frac1z\mathrm dz=\ln(|z|) +d=\ln(z)+r=:F(z)$$ [/mm]
Und da dies für komplexe Argument gilt, so muss dies doch auch für reelle Argumente gelten.

Lange Rede, Sinn meiner Behauptung: [mm] $F(x)=\ln(x)$ [/mm] - auch ohne Betrag - ist eine mögliche Stammfunktion von [mm] $f(x)=\frac1x$. [/mm]

Was meint ihr dazu?


        
Bezug
Beträge b. Int. von $\frac1x$: Antwort
Status: (Antwort) fertig Status 
Datum: 12:09 Sa 20.04.2013
Autor: fred97


> Hallo!
>  
> wahrscheinlich habt schon oft gehört oder selber
> gepredigt:
>  [mm]\int\frac1x\mathrm dx=|\ln x|+c[/mm] - vergiss bloss nicht den
> Betrag!!!

Ja, aber bitte an der richtigen Stelle !!!  Also:

[mm]\int\frac1x\mathrm dx=\ln |x|+c[/mm]


>  
> Nun gebe ich zu diesem "Vergessen" mal meinen Gedanken:
>  
> wir betrachten die [mm]\ln[/mm]-Funktion mit komplexem Argument:
> [mm]\ln(z) = \ln(|z|e^{i\varphi})=\ln(|z|)+\ln(e^{i\varphi})=\ln(|z|)+ i\varphi[/mm]

Im Komplexen ist ln mehrdeutig ! Ist [mm] \varphi [/mm] ein Argument von z, so bekommst Du alle Log. von z durch

[mm]\ln(z) =\ln(|z|)+ i\varphi+ 2k \pi *i[/mm]   (k [mm] \in \IZ) [/mm]


>  
> [mm]\varphi[/mm] ist eine reelle Zahl, also ist [mm]i\varphi[/mm] eine
> imaginäre Zahl, und es gilt:
>  [mm]\ln(|x|) + c = \ln(x),\quad\text{wobei $c$ eine imaginäre Zahl ist}.[/mm]

Ja, was jetzt ? x [mm] \in \IR [/mm] ? oder z [mm] \in \IC [/mm] ? Ist jetzt z=x


>  




Ab jetzt wirds (für mich ) völlig unverständlich !

> Wählen wir nun
>  [mm]d=-i\varphi+r,\quad r\in\mathbb R[/mm]
>  in
>  [mm]\int \frac1x\mathrm dx=\ln(x) +d\quad d\in\mathbb C[/mm]
>  so
> ergibt sich doch völlig legitim
>  [mm]\int \frac1x\mathrm dx=\ln(x) +d=:F(x)[/mm]
> mit [mm]F(x)[/mm] als reellwertiger Funktion -?
>  Die Integrationskonstante kann also dieStamm-Funktion in
> zwei Dimensionen verschieben:
> 1. zum einen in [mm]y[/mm]-Richtung
>  2. vom reellen ins komplexe
>  
> In der Schule wird das 2. demnach nicht berücksichtigt und
> sogar leider als falsch deklariert! - oder mache ich hier
> selber nen Fehler?


Da blick ich nicht mehr durch. Wäre es möglich, dass Du Dich klar ausdrückst ?

>  
> Was meint ihr dazu?

Machen wirs kurz:

In [mm] \IR [/mm] \ { 0 } hat die Funktion 1/x die Stammfunktionen ln(|x|) +c

In [mm] \IC [/mm] \ { 0 } hat die Funktion 1/z keine Stammfunktion.


FRED

>  


Bezug
                
Bezug
Beträge b. Int. von $\frac1x$: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:28 Sa 20.04.2013
Autor: Riesenradfahrrad

Hallo Fred,

vielen Dank für rasche! Antwort.
Ich habe versucht, mich verständlicher auszudrücken, und den Beitrag bearbeitet.

Frage bleibt für mich:

Ist $F(x)=ln(x)$ eine mögliche Stammfunktion von [mm] $f(x)=\frac1x$?? [/mm]



Bezug
                        
Bezug
Beträge b. Int. von $\frac1x$: Antwort
Status: (Antwort) fertig Status 
Datum: 12:34 Sa 20.04.2013
Autor: fred97


> Hallo Fred,
>  
> vielen Dank für rasche! Antwort.
>  Ich habe versucht, mich verständlicher auszudrücken, und
> den Beitrag bearbeitet.
>
> Frage bleibt für mich:
>  
> Ist [mm]F(x)=ln(x)[/mm] eine mögliche Stammfunktion von
> [mm]f(x)=\frac1x[/mm]??

Ja, für x>0

FRED

>  
>  


Bezug
                                
Bezug
Beträge b. Int. von $\frac1x$: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:02 Sa 20.04.2013
Autor: Riesenradfahrrad


> > Frage bleibt für mich:
>  >  
> > Ist [mm]F(x)=ln(x)[/mm] eine mögliche Stammfunktion von
> > [mm]f(x)=\frac1x[/mm]??
>  
> Ja, für x>0
>  

..mmh... also ich find das alles gar nicht so trial.
Es scheint doch wohl so zu sein, dass man sehr wohl über ganz [mm] $\mathbb [/mm] R$ (außer 0) integrieren kann, die Stammfunktion aber nur für x>0 reellwertig ist. Demnach dürfte ein Schüler im Abitur die Antwort [mm] "$\ln(x)$ [/mm] ist eine Stammfunktion von [mm] $\frac1x$" [/mm] geben - [mm] \textit{ohne} [/mm] erwähnen zu müssen: $x>0$.
  


Bezug
                                        
Bezug
Beträge b. Int. von $\frac1x$: Antwort
Status: (Antwort) fertig Status 
Datum: 13:14 Sa 20.04.2013
Autor: fred97

Wir betrachte die Funktion f(x):=1/x  für x [mm] \ne [/mm] 0

f hat auf (0, [mm] \infty) [/mm] die Stammfunktion ln(x)

f hat auf ( - [mm] \infty, [/mm] 0) die Stammfunktion ln(-x)

Fazit:

f hat auf [mm] \IR [/mm] \ { 0 } die Stammfunktion ln(|x|)

Jetzt klar ?

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]