www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenBetrag konvergenter Folge
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - Betrag konvergenter Folge
Betrag konvergenter Folge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Betrag konvergenter Folge: Beispiel
Status: (Frage) beantwortet Status 
Datum: 13:45 Fr 04.11.2011
Autor: Dr.Prof.Niemand

Hi,

ich überlege gerade, ob der Betrag einer konvergenten Folge ebenfalls konvergent ist. Ich habe mir gedacht nein, da Reihen als Folgen dargestellt werden können und beispielsweise [mm] a_{n}= \summe_{i=1}^{n} \bruch{(-1)^{n}}{n} [/mm] konvergiert, aber [mm] |a_{n}|= [/mm] | [mm] \summe_{i=1}^{n} \bruch{(-1)^{n}}{n} [/mm] | = [mm] \summe_{i=1}^{n} \bruch{1}{n} [/mm] nicht konvergiert.
Ich bin jetzt auf der Suche nach einem einfacheren Beispiel, indem kein Summenzeichen vorkommt also eine einfache Zahlenfolge in [mm] \IR [/mm] , aber irgendwie will mir keine einfallen, vllt. hat ja jemand eine für mich oder ist mein Grundgedanke schon falsch?

LG

        
Bezug
Betrag konvergenter Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 13:49 Fr 04.11.2011
Autor: donquijote


> Hi,
>  
> ich überlege gerade, ob der Betrag einer konvergenten
> Folge ebenfalls konvergent ist. Ich habe mir gedacht nein,
> da Reihen als Folgen dargestellt werden können und
> beispielsweise [mm]a_{n}= \summe_{i=1}^{n} \bruch{(-1)^{n}}{n}[/mm]
> konvergiert, aber [mm]|a_{n}|=[/mm] | [mm]\summe_{i=1}^{n} \bruch{(-1)^{n}}{n}[/mm]
> | = [mm]\summe_{i=1}^{n} \bruch{1}{n}[/mm] nicht konvergiert.
>  Ich bin jetzt auf der Suche nach einem einfacheren
> Beispiel, indem kein Summenzeichen vorkommt also eine
> einfache Zahlenfolge in [mm]\IR[/mm] , aber irgendwie will mir keine
> einfallen, vllt. hat ja jemand eine für mich oder ist mein
> Grundgedanke schon falsch?
>  
> LG

Der Betrag einer konvergenten Folge ist ebenfalls konvergent, also gibt es kein Gegenspeispiel.
Deine Überlegung ist falsch, denn
[mm] |\summe_{i=1}^{n} \bruch{(-1)^{n}}{n}|\ne \summe_{i=1}^{n}| \bruch{(-1)^{n}}{n}|=\summe_{i=1}^{n} \bruch{1}{n} [/mm]


Bezug
                
Bezug
Betrag konvergenter Folge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:51 Fr 04.11.2011
Autor: Dr.Prof.Niemand

danke,
ich dachte mir, dass ich etwas übersehen haben muss.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]