www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesBetragsungleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Sonstiges" - Betragsungleichung
Betragsungleichung < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Betragsungleichung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 14:43 Do 17.05.2007
Autor: Lauraneedshelp

Aufgabe
Lösen sie folgende Ungleichungen und skizzieren Sie den Sachverhalt!
|x+2| [mm] \ge [/mm] 1/2|x-1|

Ich soll oben genannte Ungleichung lösen und hab dazu erstmal die Fälle ermittelt:

|x+2| [mm] \ge [/mm] 0 -> x [mm] \ge [/mm] -2
|x-1| [mm] \ge [/mm] 0 -> x [mm] \ge [/mm] 1
-> möglich (blaue Linien)

|x+2| [mm] \ge [/mm] 0 -> x [mm] \ge [/mm] -2
|x-1| [mm] \le [/mm] 0 -> x [mm] \le [/mm] 1
-> möglich (grüne Linien)

|x+2| [mm] \le [/mm] 0 -> x [mm] \le [/mm] -2
|x-1| [mm] \le [/mm] 0 ->  x [mm] \le [/mm] 1
-> möglich (rote Linien)

|x+2| [mm] \le [/mm] 0 -> x [mm] \le [/mm] -2
|x-1| [mm] \ge [/mm] 0 ->  x [mm] \ge [/mm] 1
-> nicht möglich

[Dateianhang nicht öffentlich]

Daraufhin ergeben sich folgende Fälle:

1. Fall: [mm] (-\infty;-2) [/mm]
-(x+2) [mm] \ge [/mm] -1/2(x-1) -> x [mm] \le [/mm] -5

2. Fall: [-2;1]
(x+2) [mm] \ge [/mm] -1/2(x-1) -> x [mm] \ge [/mm] -1

3. Fall: [mm] (1;+\infty) [/mm]
(x+2) [mm] \ge [/mm] 1/2(x-1) -> x [mm] \ge [/mm] -5

Daraufhin habe ich die -5 als Lösung ausgeschlossen, weil es ja unmöglich ist, dass die Lösung [mm] \ge [/mm] -5 ist und gleichzeitig [mm] \le [/mm] -5.

Nun steht aber in der Lösung, dass auch die -1 als Lösung ausgeschlossen ist. Das würde ja nur gehen, wenn die -1 beim 2. Fall rauskommen würde, da also das Minuszeichen vor den ersten Betrag gesetzt wird und nicht vor den zweiten: -(x+2) [mm] \ge [/mm] 1/2(x-1) -> x [mm] \le [/mm] -1

Aber warum ist das so und wie entscheidet sich, wann vor welchen Betrag -1 geschrieben wird?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
        
Bezug
Betragsungleichung: doppelt
Status: (Antwort) fertig Status 
Datum: 15:10 Do 17.05.2007
Autor: Loddar

Hallo Laura,

[willkommenmr] !!!


Du hast in Deinen Fallunterscheidungen z.B. den Fall $x \ [mm] \red{=} [/mm] \ 1$ doppelt vertreten.

Wenn Du im ersten Fall (völlig richtig) ansetzt $x \ [mm] \red{\ge} [/mm] \ 1$ , darfst Du im 2. Fall lediglich $x \ [mm] \red{<} [/mm] \ 1$ berücksichtigen.


Gruß
Loddar


Bezug
                
Bezug
Betragsungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:51 Fr 18.05.2007
Autor: Lauraneedshelp

Hallo Loddar,

vielen Dank für deine Antwort. Leider versteh ich immernoch nicht, wie sich nun entscheidet, vor welchen Betrag ich wann das Minuszeichen setze.

Beim ersten Fall habe ich vor jeden Betrag ein Minus gesetzt, weil alles im negativen Bereich liegt. Beim 3. Fall hab ich vor keinen Betrag ein Minus gesetzt, weil alles im positiven Bereich liegt.

Wie ist das aber nun im zweiten Fall, da liegen die Beträge ja in beiden Bereichen?

Bezug
                        
Bezug
Betragsungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:22 Fr 18.05.2007
Autor: M.Rex

Hallo

Hier mal die Definition der Betragsfunktion:

[mm] |x|=\begin{cases} x, & \mbox{für } x\ge0 \\ -x, & \mbox{für } x<0 \end{cases} [/mm]

Also: immer dann, wenn der Term innerhalb der Betrgsstriche negativ wird, setze stattdessen eine Minusklammer, ist der Term grösser oder gleich Null, kannst du sie "wegfallen" lassen.

Also hier:

[mm] |x+2|=\begin{cases} x+2, & \mbox{für } x+2\ge0 \\ -(x+2), & \mbox{für } x+2<0 \end{cases} [/mm]


Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]