www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikBewegungsgleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Physik" - Bewegungsgleichung
Bewegungsgleichung < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bewegungsgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:33 Fr 18.11.2005
Autor: steelscout

Hi,
ich soll die Bewegungsgleichung für den unterdämpften Fall
[mm] x''(t)+2\beta*x'(t)+\omega^{2}x(t)=f(t) [/mm]
mit f(t)=a für [mm] t>t_{0}>0 [/mm] und f(t)=0 sonst, wenn der Oszillator zur Zeit t=0 an x=0 ruht.

Wenn ich das richtig verstehe, also ein bis zum Zeitpunkt [mm] t_{0} [/mm] in Ruhe befindlicher Oszillator auf den danach eine konstante Beschleunigung wirkt.
Bis zum Zeitpunkt t=0 kann ich also einfach x(t)=0 annehmen, oder?
Die Lösung des homogenen Teils der obigen Differentialgleichung dürfte mit den "ruhenden" Anfangsbedingungen ja auch 0 sein. Als spezielle Lösung erhielt ich [mm] x_{s}=\bruch{a}{\omega^{2}}. [/mm]
Das müsste ja dadurch, dass die homogene Lösung bei mir null ist auch gleichzeitig die Lösung x(t) sein, aber das würde ja bedeuten, dass der Oszillator zum Zeitpunkt [mm] t_{0} [/mm] instantan zur Auslenkung [mm] \bruch{a}{\omega^{2}} [/mm] kommt, aber das kann doch nicht sein, oder?

PS:
Hab es auch mal wie in der Vorlesung mit Fouriertransformation versucht, aber da kam ich auch auf keinen grünen Zweig.

        
Bezug
Bewegungsgleichung: Versuch
Status: (Antwort) fertig Status 
Datum: 23:14 Sa 19.11.2005
Autor: leduart

Hallo scout
>  ich soll die Bewegungsgleichung für den unterdämpften
> Fall
>  [mm]x''(t)+2\beta*x'(t)+\omega^{2}x(t)=f(t)[/mm]
>  mit f(t)=a für [mm]t>t_{0}>0[/mm] und f(t)=0 sonst, wenn der
> Oszillator zur Zeit t=0 an x=0 ruht.
>  
> Wenn ich das richtig verstehe, also ein bis zum Zeitpunkt
> [mm]t_{0}[/mm] in Ruhe befindlicher Oszillator auf den danach eine
> konstante Beschleunigung wirkt.
>  Bis zum Zeitpunkt t=0 kann ich also einfach x(t)=0
> annehmen, oder?

ja, aber...

>  Die Lösung des homogenen Teils der obigen
> Differentialgleichung dürfte mit den "ruhenden"
> Anfangsbedingungen ja auch 0 sein. Als spezielle Lösung
> erhielt ich [mm]x_{s}=\bruch{a}{\omega^{2}}[/mm].
>  Das müsste ja dadurch, dass die homogene Lösung bei mir
> null ist auch gleichzeitig die Lösung x(t) sein, aber das
> würde ja bedeuten, dass der Oszillator zum Zeitpunkt [mm]t_{0}[/mm]
> instantan zur Auslenkung [mm] \bruch{a}{\omega^{2}}[/mm] [mm]\}[/mm] kommt, aber
> das kann doch nicht sein, oder?

Nein, wegen Energiesatz muss weg und Geschw. stetig sein, dagegen Beschl nicht.
Also ich würde probieren die HOMOGENE Dgl. mit der Randbed. [mm] x(t_{0})=\bruch{a}{\omega^{2}} x'(t_{0})=0 [/mm] lösen und diese Lösung von der Gleichgewichtslosung [mm] x(t)=\bruch{a}{\omega^{2}} [/mm] abzuziehen.
Alternativ fällt mir nur ein, die Sprungfkt, durch ein z.Bsp [mm] sin^{2}(w*t) [/mm] richtig an t0 angepasst und dann immer steiler, d.h. w gegen unendlich. scheint mir aber komplizierter.
Gruss leduart.

Bezug
                
Bezug
Bewegungsgleichung: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 14:52 So 20.11.2005
Autor: steelscout

Hmm, also das Ergebnis scheint vom Graphen her den Sachverhalt widerzuspiegeln, aber wie kann ich die Wahl der Anfangsbedingung [mm] x(0)=\bruch{a}{w^{2}} [/mm] erklären?
Außerdem soll ich ausgehend von diesem Ergebnis noch die Bewegungsgleichung für eine Stoßkraft [mm] f(t)=\bruch{1}{\varepsilon} [/mm] von [mm] t_{0} [/mm] <t < [mm] t_{0}+\varepsilon [/mm] herleiten.
Klingt ja nach delta-funktion, da wurde das Vorgehen bisher nur an einem Fall gezeigt, den wir noch nicht lösen können, darum kenn' ich da auch noch nich wirklich viele Lösungsstrategien...

Bezug
                        
Bezug
Bewegungsgleichung: Randbed.
Status: (Antwort) fertig Status 
Datum: 00:24 Mo 21.11.2005
Autor: leduart

Hallo
> Hmm, also das Ergebnis scheint vom Graphen her den
> Sachverhalt widerzuspiegeln, aber wie kann ich die Wahl der
> Anfangsbedingung [mm]x(0)=\bruch{a}{w^{2}}[/mm] erklären?

Ich wollte das eigentlich als [mm] x(t_{0}). [/mm]
Dein Ansatz wär dann [mm] x(t)=Ae^{\lambda1*(t-t_{0}} [/mm] + [mm] B*e^{\lambda2*(t-t_{0}} [/mm] und [mm] x(t_{0})=a/w^2 [/mm]
das ist doch die stationäre Losg für f(t)=a und [mm] x(t)=a/w^2! [/mm]
Das nächste muss so ähnlich gehen, nur in einem weiteren Teil.
Hab heute keine Lust mehr, das durchzudenken. also musst du wohl selbst ran

>  Außerdem soll ich ausgehend von diesem Ergebnis noch die
> Bewegungsgleichung für eine Stoßkraft
> [mm]f(t)=\bruch{1}{\varepsilon}[/mm] von [mm]t_{0}[/mm] <t <
> [mm]t_{0}+\varepsilon[/mm] herleiten.

Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]