Bewegungsgleichung < Physik < Naturwiss. < Vorhilfe
|
Hi,
ich soll die Bewegungsgleichung für den unterdämpften Fall
[mm] x''(t)+2\beta*x'(t)+\omega^{2}x(t)=f(t)
[/mm]
mit f(t)=a für [mm] t>t_{0}>0 [/mm] und f(t)=0 sonst, wenn der Oszillator zur Zeit t=0 an x=0 ruht.
Wenn ich das richtig verstehe, also ein bis zum Zeitpunkt [mm] t_{0} [/mm] in Ruhe befindlicher Oszillator auf den danach eine konstante Beschleunigung wirkt.
Bis zum Zeitpunkt t=0 kann ich also einfach x(t)=0 annehmen, oder?
Die Lösung des homogenen Teils der obigen Differentialgleichung dürfte mit den "ruhenden" Anfangsbedingungen ja auch 0 sein. Als spezielle Lösung erhielt ich [mm] x_{s}=\bruch{a}{\omega^{2}}.
[/mm]
Das müsste ja dadurch, dass die homogene Lösung bei mir null ist auch gleichzeitig die Lösung x(t) sein, aber das würde ja bedeuten, dass der Oszillator zum Zeitpunkt [mm] t_{0} [/mm] instantan zur Auslenkung [mm] \bruch{a}{\omega^{2}} [/mm] kommt, aber das kann doch nicht sein, oder?
PS:
Hab es auch mal wie in der Vorlesung mit Fouriertransformation versucht, aber da kam ich auch auf keinen grünen Zweig.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:14 Sa 19.11.2005 | Autor: | leduart |
Hallo scout
> ich soll die Bewegungsgleichung für den unterdämpften
> Fall
> [mm]x''(t)+2\beta*x'(t)+\omega^{2}x(t)=f(t)[/mm]
> mit f(t)=a für [mm]t>t_{0}>0[/mm] und f(t)=0 sonst, wenn der
> Oszillator zur Zeit t=0 an x=0 ruht.
>
> Wenn ich das richtig verstehe, also ein bis zum Zeitpunkt
> [mm]t_{0}[/mm] in Ruhe befindlicher Oszillator auf den danach eine
> konstante Beschleunigung wirkt.
> Bis zum Zeitpunkt t=0 kann ich also einfach x(t)=0
> annehmen, oder?
ja, aber...
> Die Lösung des homogenen Teils der obigen
> Differentialgleichung dürfte mit den "ruhenden"
> Anfangsbedingungen ja auch 0 sein. Als spezielle Lösung
> erhielt ich [mm]x_{s}=\bruch{a}{\omega^{2}}[/mm].
> Das müsste ja dadurch, dass die homogene Lösung bei mir
> null ist auch gleichzeitig die Lösung x(t) sein, aber das
> würde ja bedeuten, dass der Oszillator zum Zeitpunkt [mm]t_{0}[/mm]
> instantan zur Auslenkung [mm] \bruch{a}{\omega^{2}}[/mm] [mm]\}[/mm] kommt, aber
> das kann doch nicht sein, oder?
Nein, wegen Energiesatz muss weg und Geschw. stetig sein, dagegen Beschl nicht.
Also ich würde probieren die HOMOGENE Dgl. mit der Randbed. [mm] x(t_{0})=\bruch{a}{\omega^{2}} x'(t_{0})=0 [/mm] lösen und diese Lösung von der Gleichgewichtslosung [mm] x(t)=\bruch{a}{\omega^{2}} [/mm] abzuziehen.
Alternativ fällt mir nur ein, die Sprungfkt, durch ein z.Bsp [mm] sin^{2}(w*t) [/mm] richtig an t0 angepasst und dann immer steiler, d.h. w gegen unendlich. scheint mir aber komplizierter.
Gruss leduart.
|
|
|
|
|
Hmm, also das Ergebnis scheint vom Graphen her den Sachverhalt widerzuspiegeln, aber wie kann ich die Wahl der Anfangsbedingung [mm] x(0)=\bruch{a}{w^{2}} [/mm] erklären?
Außerdem soll ich ausgehend von diesem Ergebnis noch die Bewegungsgleichung für eine Stoßkraft [mm] f(t)=\bruch{1}{\varepsilon} [/mm] von [mm] t_{0} [/mm] <t < [mm] t_{0}+\varepsilon [/mm] herleiten.
Klingt ja nach delta-funktion, da wurde das Vorgehen bisher nur an einem Fall gezeigt, den wir noch nicht lösen können, darum kenn' ich da auch noch nich wirklich viele Lösungsstrategien...
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 00:24 Mo 21.11.2005 | Autor: | leduart |
Hallo
> Hmm, also das Ergebnis scheint vom Graphen her den
> Sachverhalt widerzuspiegeln, aber wie kann ich die Wahl der
> Anfangsbedingung [mm]x(0)=\bruch{a}{w^{2}}[/mm] erklären?
Ich wollte das eigentlich als [mm] x(t_{0}).
[/mm]
Dein Ansatz wär dann [mm] x(t)=Ae^{\lambda1*(t-t_{0}} [/mm] + [mm] B*e^{\lambda2*(t-t_{0}} [/mm] und [mm] x(t_{0})=a/w^2
[/mm]
das ist doch die stationäre Losg für f(t)=a und [mm] x(t)=a/w^2!
[/mm]
Das nächste muss so ähnlich gehen, nur in einem weiteren Teil.
Hab heute keine Lust mehr, das durchzudenken. also musst du wohl selbst ran
> Außerdem soll ich ausgehend von diesem Ergebnis noch die
> Bewegungsgleichung für eine Stoßkraft
> [mm]f(t)=\bruch{1}{\varepsilon}[/mm] von [mm]t_{0}[/mm] <t <
> [mm]t_{0}+\varepsilon[/mm] herleiten.
Gruss leduart
|
|
|
|