www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTrigonometrische FunktionenBeweis Ableitungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Trigonometrische Funktionen" - Beweis Ableitungen
Beweis Ableitungen < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Ableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:21 Sa 31.03.2007
Autor: Zwinkerlippe

Aufgabe
Für jede reelle Zahl a mit $ [mm] a\ge1 [/mm] $ ist eine Funktion $ [mm] f_a [/mm] $ gegeben durch $ [mm] y=f_a(x)=a+sin(ax), x\in\IR. [/mm] $
d) Beweisen Sie durch vollständige Induktion, dass für die (2n)-te Ableitung der Funktion [mm] f_a [/mm] gilt: [mm] f_a^{(2n)}(x)=(-1)^{n}*a^{2n}*sin(ax), [/mm] weiterhin [mm] n\in\IN, n\ge1! [/mm]

Hallo Ihr da draußen,

Ableitungen bilden ist hier ja eigentlich nicht schwer:
f(x)=a+sin(ax)
f'(x)=a*cos(ax)
[mm] f''(x)=-a^{2}*sin(ax) [/mm]
[mm] f'''(x)=-a^{3}*cos(ax) [/mm]
[mm] f''''(x)=a^{4}*sin(ax) [/mm]

Zu betrachten sind ja die 2., 4., 6., ......Ableitung. Ich erkenne auch die Systematik. Mein Induktionsanfang ist die 2. Ableitung, da ja in der Aufgabe 2n steht, [mm] f''(x)=-a^{2}*sin(ax), [/mm] aber wie kann ich jetzt weitermachen?

Klaus


        
Bezug
Beweis Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:30 Sa 31.03.2007
Autor: schachuzipus

Hallo Zinkerlippe,

Ind.Schritt von 2n auf 2n+2 (2n auf 2(n+1))

IA: [mm] f_a^{(2n)}(x)=(-1)^{n}\cdot{}a^{2n}\cdot{}sin(ax) [/mm]

zz: [mm] f_a^{(2n+2)}(x)=(-1)^{n+1}\cdot{}a^{2n+2}\cdot{}sin(ax) [/mm]

Dazu würde ich [mm] f_a [/mm] aus der IA hernehmen und 2mal ableiten

Hoffe, damit kommst du ans Ziel

Gruß

schachuzipus

Bezug
                
Bezug
Beweis Ableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:37 Sa 31.03.2007
Autor: Zwinkerlippe

Einen wunderschönen Sonnabend Nachmittag, und Bayern verliert,

Induktionsanfang:
n=1
[mm] f_a^{2n}(x)=(-1)^{n}*a^{2n}*sin(ax) [/mm]

[mm] f_a^{2}(x)=(-1)^{1}*a^{2}*sin(ax)=-a^{2}*sin(ax) [/mm]

zu zeigen:

[mm] f_a^{2n}(x)=(-1)^{n}*a^{2n}*sin(ax) [/mm]

[mm] f_a^{2n+1}(x)=(-1)^{n}*a^{2n+1}*cos(ax) [/mm]

[mm] f_a^{2n+2}(x)=(-1)^{n}*(-1)*a^{2n+1}*a*sin(ax) [/mm]

[mm] f_a^{2n+2}(x)=(-1)^{n+1}*a^{2n+2}*sin(ax) [/mm]

kann dies schon der gesamte Beweis sein??

Klaus




Bezug
                        
Bezug
Beweis Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:47 Sa 31.03.2007
Autor: schachuzipus


> Einen wunderschönen Sonnabend Nachmittag, und Bayern
> verliert,
>  
> Induktionsanfang:
>  n=1
> [mm]f_a^{2n}(x)=(-1)^{n}*a^{2n}*sin(ax)[/mm]
>  
> [mm]f_a^{2}(x)=(-1)^{1}*a^{2}*sin(ax)=-a^{2}*sin(ax)[/mm]
>  
> zu zeigen:
>  
> [mm]f_a^{2n}(x)=(-1)^{n}*a^{2n}*sin(ax)[/mm]
>  
> [mm]f_a^{2n+1}(x)=(-1)^{n}*a^{2n+1}*cos(ax)[/mm]
>  
> [mm]f_a^{2n+2}(x)=(-1)^{n}*(-1)*a^{2n+1}*a*sin(ax)[/mm]
>  
> [mm]f_a^{2n+2}(x)=(-1)^{n+1}*a^{2n+2}*sin(ax)[/mm]
>  
> kann dies schon der gesamte Beweis sein??
>  
> Klaus


Moin Klaus,

warum nicht?

Nur den Induktionsschritt [mm] (2n\rightarrow [/mm] 2n+2) noch schön "verpacken":

Gruß

schachuzipus



Bezug
                                
Bezug
Beweis Ableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:54 Sa 31.03.2007
Autor: Zwinkerlippe

Hallo schachuzipus, was meinst du mit "den Induktionsschritt noch schön verpacken"??
Klaus

Bezug
                                        
Bezug
Beweis Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:02 Sa 31.03.2007
Autor: schachuzipus

Hi,

in den Rahmen des Ind.beweises:
[mm] \underline{IA}:n=1 [/mm]

....


[mm] \underline{Ind.Schritt}: 2n\rightarrow [/mm] 2n+2

[mm] \underline{IndVor/Ind.Ann}: f_a^{2n}(x)=(-1)^{n}\cdot{}a^{2n}\cdot{}sin(ax) [/mm]

[mm] \Rightarrow f_a^{2n+1}(x)=... [/mm]

[mm] \Rightarrow f_a^{2n+2}(x)=....=(-1)^{n+1}\cdot{}a^{2n+2}\cdot{}sin(ax) [/mm]

Also gilt die Beh für alle [mm] k\in \IN [/mm] mit k=2n

So in der Art, halt mit bissl Kommentar dran ;-)

Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]