www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieBeweis Eigenschaft L-Integral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integrationstheorie" - Beweis Eigenschaft L-Integral
Beweis Eigenschaft L-Integral < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Eigenschaft L-Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:38 Do 09.04.2009
Autor: XPatrickX

Aufgabe
Seien [mm] $f,g:E\to\IR$ [/mm] messbar, beschränkt und [mm] $\mu(E)<\infty$ [/mm]

i) $f=g$ fast überall auf $E [mm] \Rightarrow \int_E f\; d\mu [/mm] = [mm] \int_E [/mm] g [mm] \; d\mu$ [/mm]

Hallo,

zur obigen Eigenschaft habe ich folgenden Beweis aus der Vorlesung:

[mm] $\int [/mm] f [mm] \; d\mu [/mm] = [mm] \sup_{\varphi \le f} \int \varphi \; d\mu =\sup_{\varphi \le f \text{ f.ü.}} \int \varphi \; d\mu =\sup_{\varphi \le g \text{ f.ü.}} \int \varphi \; d\mu [/mm] = [mm] \int [/mm] g [mm] \; d\mu$ [/mm]

wobei hier [mm] \varphi [/mm] eine einfache Funktion.


Ich selber würde den Beweis etwas anders machen, wollte mal fragen, ob das dann so auch ok ist:

f=g f.ü. bedeutet ja f(x)=g(x) für alle [mm] $x\in [/mm] E-N$ mit eine Lebesgue Nullmenge N.

Also:
[mm] $\int_E [/mm] f [mm] \; d\mu [/mm] = [mm] \int_{E-N} [/mm] f [mm] \; d\mu [/mm] + [mm] \int_N [/mm] f [mm] \; d\mu [/mm] =  [mm] \int_{E-N} [/mm] f [mm] \; d\mu =\int_{E-N} [/mm] g [mm] \; d\mu [/mm] = [mm] \int_{E-N} [/mm] g [mm] \; d\mu [/mm] + [mm] \int_N [/mm] g [mm] \; d\mu [/mm] = [mm] \int_E [/mm] g [mm] \; d\mu$ [/mm]

Da das Integral über eine Nullmenge ja Null ist.
Kann man das so machen oder habe ich dabei was übersehen?

Danke, viele Grüße
Patrick

        
Bezug
Beweis Eigenschaft L-Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 19:41 Do 09.04.2009
Autor: Blech


> f=g f.ü. bedeutet ja f(x)=g(x) für alle [mm]x\in E-N[/mm] mit eine
> Lebesgue Nullmenge N.
>
> Also:
> [mm]\int_E f \; d\mu = \int_{E-N} f \; d\mu + \int_N f \; d\mu = \int_{E-N} f \; d\mu =\int_{E-N} g \; d\mu = \int_{E-N} g \; d\mu + \int_N g \; d\mu = \int_E g \; d\mu[/mm]
>  

Bei solchen Beweisen kommt es immer sehr darauf an, wie ihr Sachen davor definiert habt, und welche Sätze zur Verfügung stehen.
Im Prinzip finde ich Deinen Beweis schöner.


> Da das Integral über eine Nullmenge ja Null ist.

Folgt auch wegen der Beschränktheit von f und g sofort, weil man die Funktion in ein Rechteck packen kann.

ciao
Stefan

Bezug
                
Bezug
Beweis Eigenschaft L-Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:44 Do 09.04.2009
Autor: XPatrickX

Alles klar,
danke Dir Stefan.


LG Patrick

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]