www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationBeweis: Extrema
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integration" - Beweis: Extrema
Beweis: Extrema < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis: Extrema: Nachfrage
Status: (Frage) beantwortet Status 
Datum: 14:15 Fr 06.12.2013
Autor: Kartoffelchen

Aufgabe
Ich habe eine Frage zu einer Beweisführung. Der Vollständigkeit halber folgt der komplette Beweis bis zur unklaren Stelle

Die Funktion f:I -> [mm] $\mathbb{R}$ [/mm] sei n-mal (n größergleich 2) stetig differenzierbar auf einem offenen Intervall I.

Sei f'(a) = f''(a) = ... = [mm] $f^{n-1}(a) [/mm] = 0$ und [mm] $f^n [/mm] (a) [mm] \not [/mm] = 0$.

Ist n ungerade, so besitzt f in a kein lokales Extremum.
Ist n gerade, so hat f für [mm] $f^n(a) [/mm] > 0$ in a ein lokales Minimum, für [mm] $f^n(a) [/mm] < 0$ in a ein lokales Maximum.

BEWEIS
Sei $ [mm] f^n(a) [/mm] > 0$. Wegen der Stetigkeit von [mm] $f^n$ [/mm] gilt:

[mm] $\exists [/mm] r > 0$ sodass $(a-r, a+r) [mm] \subseteq [/mm] I$ und [mm] $f^n(x) [/mm] > 0$ für $|x-a| < r$.

Für $ h [mm] \in \mathbb{R}$ [/mm] mit $ 0 < |h| < r$ gilt nach der Taylorformel:
$f(a+h) = f(a) + [mm] \frac{f'(a)}{1!}h [/mm] + ... + [mm] \frac{f^{n-1}(a)}{(n-1)!}h^{n-1} [/mm] + [mm] \frac{f^n (a + vh)}{n!}h^n$ [/mm]
Es folgt:
$f(a+h) - f(a) =  [mm] \frac{f^n (a + vh)}{n!}h^n$ [/mm] (da nach Voraussetzung gewisse Ableitungen in a gleich Null sind) [ mit 0 < v < 1 ]

Für gerades n folgt: $f(a+h) - f(a) > 0 [mm] \implies [/mm] f(a+h) > f(a)$
____________________


Es geht mir um den letzten Schritt. Hier soll noch gezeigt werden, warum das so ist.
Warum darf ich davon ausgehen, dass  [mm] $\frac{f^n (a + vh)}{n!}h^n$ [/mm] für gerades n größer Null ist? Was weiß ich denn von [mm] $f^n(a [/mm] + vh)$ ?

        
Bezug
Beweis: Extrema: Antwort
Status: (Antwort) fertig Status 
Datum: 15:00 Fr 06.12.2013
Autor: Gonozal_IX

Hiho,

der Beweis beginnt doch mit:

>  Sei [mm]f^n(a) > 0[/mm]. Wegen der Stetigkeit von [mm]f^n[/mm] gilt:

> [mm]\exists r > 0[/mm] sodass [mm](a-r, a+r) \subseteq I[/mm] und [mm]f^n(x) > 0[/mm] für [mm]|x-a| < r[/mm].


> Was weiß ich denn von [mm]f^n(a + vh)[/mm] ?  

Für ausreichend kleine h liegt a+vh doch sehr nah an a und dann verwende obiges.

Gruß,
Gono.


Bezug
                
Bezug
Beweis: Extrema: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:08 Fr 06.12.2013
Autor: Kartoffelchen

Hallo!

Wenn das so in Ordnung ist werde ich das gerne tun :)
Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]